ru en
Peter G. Zograf
Peter G. Zograf
Senior Researcher
Reception hours:

By appointment


Education

1989 — D.Sc. in Mathematics and Physics («Real, Complex and Functional Analysis»)
Institution: Leningrad Department of Steklov Mathematical Institute


Scientific interests

  • mathematical physics
  • moduli spaces
  • enumerative combinatorics

Publications

14 Vincent Delecroix, Elise Goujard, Peter Zograf, Anton Zorich, with an appendix by Philip Engel, Contribution of one-cylinder square-tiled surfaces to Masur–Veech volumes; preprint (2018).
13 Zograf P.G., An explicit formula for Witten’s 2-correlators, Zapiski Nauchnykh Seminarov POMI, 468 (2018), 53-57.
11 Leon A. Takhtajan, Peter Zograf, Local index theorem for orbifold Riemann surfaces; preprint (2017).
10 Vincent Delecroix, Elise Goujard, Peter Zograf, Anton Zorich, Enumeration of meanders and Masur-Veech volumes; preprint (2017).
9 Dmitri Korotkin, Adrien Sauvaget, Peter Zograf, Tau functions, Prym-Tyurin classes and loci of degenerate differentials; preprint (2017).
8 Kazarian M., Zograf P., Rationality in map and hypermap enumeration by genus, to appear in St. Petersburg Math. Journal; preprint (2016).
7 Vincent Delecroix, Elise Goujard, Peter Zograf, Anton Zorich, Square-tiled surfaces of fixed combinatorial type: equidistribution, counting, volumes of the ambient strata; preprint (2016).
6 Peter Zograf, Maxim Kazarian, Virasoro constraints and topological recursion for Grothendieck’s dessin counting, Letters in Mathematical Physics, 105:8 (2015), 1057-­1084; preprint (2014).
5 Maryam Mirzakhani, Peter Zograf, Towards large genus asymptotics of intersection numbers on moduli spaces of algebraic curves, Geometric and Functional Analysis, 25:4 (2015), 1258-1289; preprint (2011).
4 Peter Zograf, Enumeration of Grothendieck’s Dessins and KP Hierarchy, International Mathematics Research Notices, 2015:24 (2015), 13533-13544; preprint (2013).
3 Nikita Alexeev, Peter Zograf, Random matrix approach to the distribution of genomic distance, Journal of Computational Biology, 21:8 (2014), 622-631.
2 Dmitry Korotkin, Peter Zograf, Tau function and the Prym class, Contemporary Mathematics, 593 (2013), 241-261; preprint (2013).
1 Dmitry Korotkin, Peter Zograf, From the tau function of Painlevé P6 equation to moduli spaces, Painlevé equations and related topics, De Gruyter, 241-245, 2012.