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1 Formulation and a simpli�cation

LetX1, X2, . . . , Xn be i.i.d non-negative random variables with the distributionX. We suppose that EX =
1 and E |X − 1| = α 6= 0. De�ne their products

R0 = 1; Rk =

k∏
j=1

Xj , k = 1, 2, . . . , n.

The following theorem is proved in [2] (see also [1] for the p < 1 version).

Theorem 1 (Latala's theorem). The inequality

n∑
j=0

‖vj‖ . E
∥∥∥ n∑
j=0

vjRj

∥∥∥ 6
n∑
j=0

‖vj‖

holds independently of the norm ‖ · ‖ and n (the constant depends only on α).

Here the vj are vectors in some Banach space B. Surely, only the left hand-side inequality is inter-
esting. Latala's theorem is more general, we have stated a particular case (in the original version, the
random variables Xj may have di�erent distributions; however, the discussed case already contains all
the di�culties). Our aim here is to explain the proof and provide a small simpli�cation (which will lead
to some drop of the constant in the main inequality, but, maybe, make the proof more transparent for
an analyst).

Lemma 1. Consider the i.i.d random variables Yj such that Yj = 1±α with probability 1
2 . De�ne R̃j to

be their products. Then,

E
∥∥∥ n∑
j=0

vjR̃j

∥∥∥ 6 E
∥∥∥ n∑
j=0

vjRj

∥∥∥.
Proof. We may suppose that there exist independent events Ej such that E(Xj | Ej) = 1+α and P (Ej) =
1
2 (to do this, represent the probability space as an in�nite direct product of unit intervals such that
each Xj depends on the jth coordinate only). Let S be the algebra of sets generated by the Ej . Then,
by Jensen's inequality:

E
(∥∥∥ n∑

j=0

vjRj

∥∥∥ ∣∣∣ S) 6
∥∥∥ n∑
j=0

vjRj

∥∥∥
almost surely. It remains to notice that the expression on the left coincides with∥∥∥ n∑

j=0

vjR̃j

∥∥∥,
if Yj equals 1 + α on Ej and 1− α on the complement of Ej .
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This lemma shows that we may work with the case Xj = Yj . It may seem convenient to work with
the Rademacher representation of the Yj and proceed analytically. However, the author does not know
how to prove Theorem 1 in this way.

The proof will be by induction in n, we will drop v0, use the induction assumption, and then try
to get a bound for the sum with v0 present there. However, this will be rather delicate. There will be
two principles. The �rst one is the statement of the theorem for n = 1 (one can estimate ‖v0‖ and ‖v1‖
by E ‖v0 +X1v1‖), the second one is that if one adds a big constant vector to a random vector, then the
mathematical expectation of the norm of the latter increases in a reasonable way.

2 Preliminary lemmas

We begin with the variant of the case n = 2 of Theorem 1. One can easily see that these inequalities are
sharp (take B = R).

Lemma 2. For any v0, v1 ∈ B,

E
∥∥v0 +X1v1

∥∥ > α‖v1‖; E
∥∥v0 +X1v1

∥∥ >
α

α+ 1
‖v0‖.

Proof. The �rst inequality may be rewritten as

1

2

∥∥v0 + (1 + α)v1
∥∥+

1

2

∥∥v0 + (1− α)v1
∥∥ > α‖v1‖,

which is nothing but the triangle inequality. The second inequality also follows from the triangle inequal-
ity:

1

2

∥∥v0 + (1 + α)v1
∥∥+

1

2

∥∥v0 + (1− α)v1
∥∥ =

1 + α

2

∥∥ v0
1 + α

+ v1
∥∥+

1− α
2

∥∥ v0
1− α

+ v1
∥∥ >

1− α
2

∥∥ v0
1 + α

+ v1
∥∥+

1− α
2

∥∥ v0
1− α

+ v1
∥∥ >

1− α
2

( 1

1− α
− 1

1 + α

)
‖v0‖ >

α

1 + α
‖v0‖.

Lemma 3. Let Y be a random vector in B. Suppose v ∈ B be such that P (‖Y ‖ > ‖v0‖
4 ) 6 1

4 . Then,

E
∥∥Y + v

∥∥ > E ‖Y ‖+
‖v0‖

8
.

Proof. We use Bayes's formula and the triangle inequality:

E
∥∥Y + v

∥∥ = P
(
‖Y ‖ > ‖v0‖

4

)
E
(∥∥Y + v

∥∥ ∣∣∣ ‖Y ‖ > ‖v0‖
4

)
+ P

(
‖Y ‖ 6 ‖v0‖

4

)
E
(∥∥Y + v

∥∥ ∣∣∣ ‖Y ‖ 6 ‖v0‖
4

)
>

P
(
‖Y ‖ > ‖v0‖

4

)(
E
(∥∥Y ∥∥ ∣∣∣ ‖Y ‖ > ‖v0‖

4

)
− ‖v0‖

)
+ P

(
‖Y ‖ 6 ‖v0‖

4

)(‖v0‖
2

+ E
(∥∥Y ∥∥ ∣∣∣ ‖Y ‖ 6 ‖v0‖

4

))
>

E ‖Y ‖+
(P (‖Y ‖ 6 ‖v0‖

4

)
2

− P
(
‖Y ‖ > ‖v0‖

4

))
‖v0‖ > E ‖Y ‖+

‖v0‖
8

.

We used the inequality ‖Y + v0‖ > ‖v0‖ − ‖Y ‖ > ‖v0‖
2 + ‖Y ‖ for the second summand, when we were

passing from the �rst line to the second one.

This lemma is a formalization of our second principle that says that when perturbs a random vector
with a big constant vector, the average norm increases.
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3 First attempts

Suppose that we are going to prove the inequality

c

n∑
j=0

‖vj‖ 6 E
∥∥∥ n∑
j=0

vjRj

∥∥∥, (1)

where c is su�ciently small constant, by induction in n. Suppose that it holds for n − 1. For that we
write

E
∥∥∥ n∑
j=0

vjRj

∥∥∥ =
1

2
E
∥∥∥v0+(1−α)v1+(1−α)

n∑
j=2

vj

j∏
k=1

Xk

∥∥∥+
1

2
E
∥∥∥v0+(1+α)v1+(1+α)

n∑
j=2

vj

j∏
k=1

Xk

∥∥∥ (2)

and apply the induction hypothesis to each of the summands (with vectors v0 + (1−α)v1, {(1−α)vj}nj=2

and variables X2, X3, . . . , Xn in the �rst summand and vectors v0 + (1 + α)v1, {(1 + α)vj}nj=2 and
variables X2, X3, . . . , Xn in the second). This will lead us to

E
∥∥∥ n∑
j=0

vjRj

∥∥∥ > c
(1

2
‖v0 + (1− α)v1‖+

1

2
‖v0 + (1 + α)v1‖

)
+

n∑
j=2

c‖vj‖.

So, we will have to bound c‖v0‖+ c‖v1‖ by

c
(1

2
‖v0 + (1− α)v1‖+

1

2
‖v0 + (1 + α)v1‖

)
.

It is impossible. However, this reasoning gives us hope that if we pass from inequality (1) to a more
general one, the induction may work. Let us try to prove the inequality

E
∥∥∥ n∑
j=0

vjRj

∥∥∥ >
n∑
j=0

cj‖vj‖, (3)

where cj are some coe�cients that are uniformly bounded from below. Of course, inequalities (3) and (1)
are equivalent, but (3) seems to be more �induction-friendly�. Indeed, let us try to do the same reasoning
again (i.e., use formula (2) and apply the induction hypothesis (3) to the same vectors and random
variables). This will lead us to the inequality

E
∥∥∥ n∑
j=0

vjRj

∥∥∥ > c0

(1

2
‖v0 + (1− α)v1‖+

1

2
‖v0 + (1 + α)v1‖

)
+

n∑
j=2

cj−1‖vj‖.

So, to deduce inequality (3) for n− 1 summands, we have to show that

c0

(1

2
‖v0 + (1− α)v1‖+

1

2
‖v0 + (1 + α)v1‖

)
+

n∑
j=2

(
cj−1 − cj

)
‖vj‖ > c0‖v0‖+ c1‖v1‖.

This seems to be not as hopeless as the previous attempt if we make a proper choice of the cj (however,
this inequality also seems to be untrue if v0 is big, because it turns into an equality when v0 → ∞; but
for this case we have the second principle, Lemma 3). It seems reasonable to take cj − cj−1 > 0. Again,
we use Lemma 2 to estimate the sum of linear combinations on the left hand-side:

c0

(1

2
‖v0 + (1− α)v1‖+

1

2
‖v0 + (1 + α)v1‖

)
+

n∑
j=2

(
cj−1 − cj

)
‖vj‖ > c0α‖v1‖+

n∑
j=2

(
cj−1 − cj

)
‖vj‖.

3



So, we can make prove the induction step when

c0‖v0‖ 6 (c0α− c1)‖v1‖+

n∑
j=2

(
cj−1 − cj

)
‖vj‖. (4)

Again, it is convenient to assume that c0α > c1.
How can we deal with the case when condition (4) is not satis�ed? We are going to apply Lemma 3

with the constant vector v0 and Y =
∑n
j=1 vjRj in the role of the random vector. Therefore, we will

need to estimate the probability of the event ‖Y ‖ > 1
4‖v0‖. Of course, we will have to use the fact that

inequlity (4) does not hold (to link Y and v0). So, we will have to estimate the probability of the event

|X1|
n∑
j=1

vj

j∏
k=1

Xk > (c0α− c1)‖v1‖+

n∑
j=2

(
cj−1 − cj

)
‖vj‖. (5)

4 Tails estimates

A brief examination of our assumptions show that the value cj− cj−1 tends to zero as j →∞. Therefore,
we cannot derive any information about the event (5) from the trivial estimate E ‖

∑n
j=1 vjRj‖ 6

∑
‖vj‖.

However, we have not used the assumption that the Xj are independent seriously yet. It appears, that
to get the desired estimates, we have to leave the convex world.

Lemma 4. Suppose the variables Xj be as above. Then,

(
E
∥∥∥ n∑
j=0

vjRj

∥∥∥ 1
2
)2

6
1

1− β

n∑
j=0

βj‖vj‖.

for some β < 1.

Proof. We use the inequality (
∑
|xk|)

1
2 6

∑
|xk|

1
2 and the independence of the Xj :

E
∥∥∥ n∑
j=0

vjRj

∥∥∥ 1
2

6
n∑
j=0

E
∥∥∥vjRj∥∥∥ 1

2

=

n∑
j=0

‖vj‖
1
2

(
E |X| 12

)j
=

n∑
j=0

‖vj‖
1
2

(√1 + α+
√

1− α
2

)j
6

n∑
j=0

‖vj‖
1
2 βj .

Here β =
√
1+α+

√
1−α

2 < 1. It remains to use the Cauchy inequality:

n∑
j=0

‖vj‖
1
2 βj 6

( n∑
j=0

βj
) 1

2
( n∑
j=0

βj‖vj‖
) 1

2

=
( 1

1− β

) 1
2
( n∑
j=0

βj‖vj‖
) 1

2

.

By Chebyshev's inequality, Lemma 4 leads to

P
(∥∥∥ n∑

j=0

vjRj

∥∥∥ >
t

1− β

n∑
j=0

βj‖vj‖
)
6

1√
t
. (6)

There are two things to be noticed. First, it is reasonable to take cj − cj−1 = cβj of something like that.
Second, the event from formula (5) di�ers from the one estimated in (6) (we have to multiply by X1).
This gives us some more freedom. Indeed, with probability 1

2 , X1 is smaller than one, which allows to
use estimate (6) with bigger t.
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5 Final reasoning

We take N to be a big natural number. We de�ne the coe�cients cj by the rule

c0 = a; c1 = c2 = . . . = cN = b; cj = b−
d
∑j
k=N+1 β

k

1− β
, j > N + 1.

Here a, b, and d are small positive constants to be speci�ed later. In order the cj satisfy all the above
requirements (they are c0 > αc1 and cj > 0 uniformly), these parameters must be under the conditions

b < aα, d < b.

We assume inequality (3) for n − 1 and try to prove its version for n. It remains to deal with the case
when inequality (4) does not hold, which turns into

‖v0‖ >
(
α− b

a

)
‖v1‖+

d

a(1− β)

n∑
j=N+1

β(j−N−1)‖vj‖. (7)

Consider the event Ω:
Ω = {X2 = X3 = . . . = XN = 1− α},

we have left X1 free for further use. Let X̃j be Xj conditioned on Ω. Then,

E ‖
n∑
j=0

vjRj‖ =
1

2
E
∥∥∥∥w−0 +(1−α)N

n∑
j=N+1

vj

j∏
k=N+1

X̃j

∥∥∥∥+
1

2
E
∥∥∥∥w+

0 +(1+α)(1−α)N−1
n∑

j=N+1

vj

j∏
k=N+1

X̃j

∥∥∥∥,
where

w−0 = v0 + (1− α)(

N∑
j=1

(1− α)jvj); v0 + (1 + α)(

N∑
j=1

(1− α)jvj).

By Lemma 2, ‖w−0 ‖ + ‖w+
0 ‖ > α

α+1‖v0‖, so at least one of these vectors is bigger than α
2(α+1)‖v0‖. In

order to apply Lemma 3, we need to estimate the probability of the event

α

2(α+ 1)
‖v0‖ 6 (1 + α)(1− α)N−1

n∑
j=N+1

vj

j∏
k=N+1

X̃j .

By assumption (7), this event leads to (we also killed the summand with ‖v1‖)
n∑

j=N+1

vj

j∏
k=N+1

X̃j >
αd

2(1 + α)2(1− α)N−1a(1− β)

( n∑
j=N+1

β(j−N−1)‖vj‖
)
.

By inequality (6), the probability of this event does not exceed√
2(1 + α)2(1− α)N−1a

αd
.

So, we require √
2(1 + α)2(1− α)N−1a

αd
<

1

4
,

which seems to be true when N is su�ciently big. So, we can use Lemma 3 for the bigger of the vectors w+
0

and w−0 to get

E
∥∥∥∥w±0 +(1±α)(1−α)N−1

n∑
j=N+1

vj

j∏
k=N+1

X̃j

∥∥∥∥ >
α

8(1 + α)
‖v0‖+E

∥∥∥∥(1±α)(1−α)N−1
n∑

j=N+1

vj

j∏
k=N+1

X̃j

∥∥∥∥.
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