
Statistical Modeling with Copulas

Aleksey Min

(based on the course materials of
Claudia Czado, Daniel Kraus and Matthias Scherer )

Technical University of Munich
Faculty of Mathematics

Winter term 2018/19



Statistical Modeling with Copulas
Acknowledgments

• Many thanks to:

− Claudia Czado and Daniel Kraus for providing the course materials on Vine Copulas

− Matthias Scherer for providing the course materials on Qunatitative Risk Management

PD Dr. Aleksey Min (TUM) 2



Statistical Modeling with Copulas
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Lecture I

Copulas, Sklar’s theorem and ordinal measures of
dependence
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Prominent example for copulas:
The US mortgage crisis

Who uses portfolio credit-risk models?

• Investment banks

• Commercial banks

• Insurance companies

• Regulators

• Rating agencies
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The US mortgage crisis
Dependence enters the game

The relevant task: understanding the loss in the portfolio up to t > 0

• This depends on:
− The vector of default times (τ1, . . . , τd) ∈ Rd

+
− The loss-given defaults 1− Ri , where Ri is the recovery rate of firm i
− The portfolio weights Ni
− The portfolio loss process is then

Losst :=
d∑

i=1

Ni (1− Ri) 1{τi≤t}, t ≥ 0

• The pricing of portfolio credit derivatives essentially requires

IE [ g(Losst) ]

for non-trivial functions g
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The US mortgage crisis
[Li (2000)] “On Default Correlation: A copula function approach”

http://dx.doi.org/10.3905/jfi.2000.319253

• Core content: Combine default times using a copula
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Copulas and Sklar’s Theorem
[Sklar (1959)]

• Definition

C : [0, 1]d → [0, 1] is called copula, if there is a random vector (U1, . . . ,Ud) such that
Uk ∼ U [0, 1] for each k and for u1, . . . , ud ∈ [0, 1]:

C(u1, . . . , ud) = P(U1 ≤ u1, . . . ,Ud ≤ ud)

• Sklar’s Theorem

F : Rd → [0, 1] is the distribution function of some random vector (X1, . . . ,Xd) if and only if there
exist a copula C : [0, 1]d → [0, 1] and univariate distribution functions F1, . . . ,Fd : R→ [0, 1] such
that

C
(
F1(x1), . . . ,Fd(xd)

)
= F (x1, . . . , xd), x1, . . . , xd ∈ R

The distribution of Xj equals Fj and the correspondence between F and C is one-to-one if all
functions F1, . . . ,Fd are continuous.
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Copulas and Sklar’s Theorem
The typical use in portfolio credit risk

Aim: Model a vector of default times
(τ1, . . . , τd)

(1) Fit marginal distribution functions
t 7→ P(τk ≤ t) =: Fk(t)

(2) Impose a (hopefully suitable) copula C on them to obtain the joint distribution F

F = C
(
F1, . . . ,Fd

)
Attention: This is mathematically valid, but is it reasonable?
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Some statistical tools
Distribution functions and quantile functions

Definition 1 (Generalised inverse | Quantile function | α-Quantile)
(a) Let h be an increasing (non-decreasing) function. With convention inf ∅ :=∞, one defines the

generalised inverse of h as

h← :=

{
R → R,
y 7→ inf{x ∈ R : h(x) ≥ y}.

(b) Let F : R→ [0, 1] be the distribution function of a random variable X, i.e. F (x) := P(X ≤ x) for all
x ∈ R.

(i) Then

F← :=

{
(0, 1) → R,
y 7→ inf{x ∈ R : F (x) ≥ y}

is the generalised inverse or quantile function.

(ii) For α ∈ (0, 1), a number qα ∈ [F←(α),F←(α+)] is called α-quantile of X.
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Some statistical tools
Distribution functions and quantile functions
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Some statistical tools
Distribution functions and quantile functions
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Some statistical tools
Distribution functions and quantile functions

Proposition 1
Let h be non-decreasing and right continuous. Denote by h← its generalized inverse. The following
properties hold:

(1) h(x) ≥ y ⇐⇒ x ≥ h←(y).

(2) h(x) < y ⇐⇒ x < h←(y).

(3) h← is non-decreasing and left-continuous.

(4) h ◦ h←(y) ≥ y (with equality, if h is continuous).

(5) h← ◦ h(x) ≤ x (with equality, if h is strictly increasing).

(6) h is strictly increasing ⇐⇒ h← is continuous.

(7) h is continuous ⇐⇒ h← is strictly increasing.

(8) h is strictly increasing and continuous on (a, b) =⇒ h← = h−1
∣∣
(a,b)

.
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Some statistical tools
Distribution functions and quantile functions

Lemma 1
Let X be a random variable with distribution function F . Then

P(F← ◦ F (X ) = X ) = 1.

Proposition 2 (Probability integral transform)
Let X be a random variable with distribution function F and quantile function F←. Then:

(1) Let U ∼ U(0, 1), then F←(U)
d
= X.

(2) F (X )
d
= U ⇐⇒ F is continuous.
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Some statistical tools
Example in R: How Proposition 2 is used for sampling

n<-1000

U<-runif(n,0,1)

X<-(-1)*log(1-U)/0.5

hist(U,freq=FALSE,breaks=20)

hist(X,freq=FALSE,breaks=20)

Histogram of U

U

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Histogram of X

X

D
en

si
ty

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

PD Dr. Aleksey Min (TUM) 15



Some statistical tools
Empirical distribution functions and quantile functions

Statistical methods are based on data

• In the simplest case, we have observations x1, . . . , xn that are real numbers.

• We consider each xj as a realization of a random variable X (i.e. xj = X (ωj)) for j = 1, . . . , n,
which are defined on the same probability space (Ω,F ,P).

• In the simplest case, these observations are independent and identically distributed (i.i.d.) and we
want to estimate the distribution function F of X .
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Some statistical tools
Empirical distribution functions and quantile functions

Definition 2 (Empirical distribution function | Empirical quantile function)
Let X1, . . . ,Xn be i.i.d. random variables with distribution function F and

X1,n ≤ X2,n ≤ · · · ≤ Xn,n

the corresponding order statistics. Then:

• The empirical distribution function is given by

Fn(x) =
1
n

n∑
k=1

1{Xk≤x}, x ∈ R,

i.e. Fn(x) = k/n for Xk ,n ≤ x < Xk+1,n.

• The empirical quantile function is given by

F←n (y) = inf{x ∈ R : Fn(x) ≥ y} = Xdyne,n,

where dze = inf{x ∈ Z : z ≤ x}.

For every x ∈ R, Fn(x) is a random variable and Fn is a random function.
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Some statistical tools
Example in R: Empirical distribution function and Proposition 2

n<-1000

U<-runif(n,0,1)

X<-qnorm(U,0,1)

plot(ecdf(X), ylab="Fn(x)", verticals = FALSE, col.01line = "gray70", main="")
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Some statistical tools
Empirical distribution functions and quantile functions

Theorem 1 (Glivenko–Cantelli)
Let {Xk}k∈N be i.i.d. random variables on a probability space (Ω,F ,P) with distribution function F and
empirical distribution function Fn. Then

lim
n→∞

sup
x∈R
|Fn(x)− F (x)| = 0, P-a.s.

If F is strictly increasing, then for y ∈ (0, 1)

lim
n→∞

F←n (y) = F←(y), P-a.s.
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Some statistical tools
Empirical distribution functions and quantile functions

We now introduce two simple diagnostic tools to test, whether the observations x1, . . . , xn are
realizations of i.i.d. random variables with distribution function F̃ .

Definition 3 (QQ-plot | PP-plot)
Let x1, . . . , xn be realizations of i.i.d. random variables with df F and

x1,n ≤ x2,n ≤ · · · ≤ xn,n

the corresponding ordered values. Let F̃ be some distribution function.

(1) A QQ-plot consists of points {(F̃←( k
n+1), xk ,n)}k=1,...,n.

(2) A PP-plot consists of points {(F̃ (xk ,n), k
n+1)}k=1,...,n.
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Some statistical tools
Empirical distribution functions and quantile functions

The interpretation of QQ-plots

• For risk management, concerning extreme events, a QQ-plot is more useful.

• Note that the first component of the QQ-plot is a theoretical quantile of F̃ and the second the
corresponding empirical quantile.

• More precisely, since

k − 1
n

<
k

n + 1
<

k
n
,

and F←n (y) = xk ,n holds for k−1
n < y < k

n , we have F←n
(

k
n+1

)
= xk ,n.

• Consequently, by Theorem 1 of Glivenko–Cantelli, if F̃ ≡ F , the points of the QQ-plot for large
sample size n should lie approximately on the unit diagonal.
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Some statistical tools
Example in R: QQ-plot

n<-500; Sample<-rt(n, df = 3); x<-ppoints(n);

qqplot(qt(x, df = 3), Sample, main = expression("QQ-plot for" ~ {t}[nu == 3]))

qqplot(qnorm(x), Sample, main = expression("QQ-plot for N(0,1)"))
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Copulas and dependence structures

What can copulas do for you?

• They describe and measure dependence between random variables.

• They make it possible to identify dependence.
• They allow us to construct new multivariate distributions, with
− arbitrary marginal laws,
− all kinds of dependence structures.

⇒ Short: They separate marginal laws from dependence.
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Copulas and dependence structures

What do you need to know for these tasks?

• A toolbox with different copula families.

• Understanding the analytical and statistical properties of different copulas.

• Simulation and estimation strategies.

• Understanding of dependence measures.

⇒ Short: This is only an introduction into a huge field.
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Copulas and dependence structures
What are copulas?

Motivating example 1: Dependence between asset movements

• Consider three time series with daily observations (April 2008 to May 2013):
− the stock price of BMW AG, {s(B)

ti }i=0,1,2,...,n,
− the stock price of Daimler AG, {s(D)

ti }i=0,1,2,...,n,
− a gold index, {s(G)

ti }i=0,1,2,...,n.

• Daily returns are defined as:

r (∗)
ti+1

:=
s(∗)

ti+1
− s(∗)

ti

s(∗)
ti

, i = 0, 1, 2, . . . , n − 1, ∗ ∈ {B,D,G}.

• Assume r (∗)
ti+1

, i = 0, 1, 2, . . . , n − 1, are i.i.d. samples from R(∗), ∗ ∈ {B,D,G}.
• We want to measure the dependence between R(B), R(D), and R(G).
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Copulas and dependence structures
What are copulas?

Different methods for assessing dependence:

1. Linear correlation: The empirical (or historical) correlation coefficient of the BMW and gold index
returns is given by

ρ̂
(B,G)
n :=

n∑
i=1

(
r (B)
ti −

1
n

∑n
j=1 r (B)

tj

)(
r (G)
ti −

1
n

∑n
j=1 r (G)

tj

)
√

n∑
i=1

(
r (B)
ti −

1
n

∑n
j=1 r (B)

tj

)2
√

n∑
i=1

(
r (G)
ti −

1
n

∑n
j=1 r (G)

tj

)2
.

This is an estimator for Pearson’s correlation coefficient ρ of R(B) and R(G)

ρ(B,G) := Cor(R(B),R(G)) :=
E
[
(R(B) − E[R(B)]) (R(G) − E[R(G)])

]√
E
[
(R(B) − E[R(B)])2

]√
E
[
(R(G) − E[R(G)])2

].
− It is the most popular dependence measure, although it measures only linear dependence.
− In our example: ρ̂(B,D)

n � ρ̂
(B,G)
n and ρ̂(B,D)

n � ρ̂
(D,G)
n (≈ 79.6% vs. ≈ 4.4%).
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Copulas and dependence structures
What are copulas?

2. Scatter plot: For each pair of (R(B), R(D), R(G)), plot the observed historical data in a
two-dimensional coordinate system:
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− All scatter plots are centered roughly around (0, 0).
− The scatter plot of the two automobile firms is more elliptically shaped and more diagonal than

the plot of gold vs. BMW or gold vs. Daimler.
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Copulas and dependence structures
What are copulas?

3. Concordance measurement: A pair of points in the scatter plot is called concordant, if one point
lies north east to the other one.
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− Idea: Use only information about the relative location of the points.
− Concordance corresponds to positive dependence.
− Much more concordant pairs for BMW vs. Daimler than for gold vs. BMW or gold vs. Daimler.
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Copulas and dependence structures
What are copulas?

3. Rank transformation: Replace each r (∗)
ti by its rank/n within its time series (r (∗)

ti )i=1,...,n and plot
these new time series against each other.
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− Transformed time series live on [0, 1]. Thus, the new scatter plot does not contain outliers like
the original plot.

− The dependence structure remains unaltered: If two points in the original scatter plot were
concordant, so are the newly assigned two points.
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Copulas and dependence structures
What are copulas?

Motivating example 2: The “Biergarten” weather derivative
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(Temperature, Sunshine Hours) of all weekends in August / September since 1948 in Regensburg.
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Copulas and dependence structures
What are copulas?

max temperature
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First consider the marginal laws:

Temperature F1 is approximately normal.

Sunshine hours F2 is approximately beta distributed with support [0, 15].
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Copulas and dependence structures
What are copulas?
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• Rank transformation: Copula might be modeled with the Gaussian copula C.

• Hence, we can specify the joint distribution via F (x1, x2) := C(F1(x1),F2(x2)).
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Copulas and dependence structures

Aim: Description of (X1, . . . ,Xd) on a probability space (Ω,F ,P).

Definition 4 (Distribution function | margins)
• The distribution function (d.f.) of (X1, . . . ,Xd) is defined as

F (x1, . . . , xd) := P(X1 ≤ x1, . . . ,Xd ≤ xd), x1, . . . , xd ∈ R.

• The one-dimensional distribution functions

Fj(x) := P(Xj ≤ x), x ∈ R,

of the components Xj , j = 1, . . . , d, are called “(one-dimensional) marginals” or
“(one-dimensional) margins” of the d.f. of the random vector (X1, . . . ,Xd).

Remark 1
The distribution function F characterizes the probability law of (X1, . . . ,Xd).
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Copulas and dependence structures
Definition 5 (Copula)
A function

C : [0, 1]d → [0, 1]

is called copula, if there is a random vector (U1, . . . ,Ud) such that:

a) Each margin Uj , j = 1, . . . , d, is uniform on [0, 1], i.e.

Uj ∼ U [0, 1],

b) C is the joint distribution of (U1, . . . ,Ud), i.e.

C(u1, . . . , ud) = P(U1 ≤ u1, . . . ,Ud ≤ ud), u1, . . . , ud ∈ [0, 1].
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Copulas and dependence structures
Graphical visualization as functions
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Cuadras–Augé copula Cα(u1, u2) = min{u1, u2} max{u1, u2}1−α,

α = 0 (upper left), α = 0.2, α = 0.4, α = 0.6, α = 0.8, and α = 1 (lower right).
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Copulas and dependence structures
Graphical visualization as level plots
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It is often more illustrative to plot a discrete grid of level sets

Lk ,n :=
{

(u1, u2) ∈ [0, 1]2 : C(u1, u2) = k/n
}
, k = 0, 1, . . . , n.
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Copulas and dependence structures
Graphical visualization as scatter plots
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Copulas and dependence structures
First examples

Independence copula:

• Consider d independent random variables Uj ∼ U [0, 1], j = 1, 2, . . . , d .
• The joint distribution of (U1,U2, . . . ,Ud) is the independence copula

Πd(u1, u2, . . . , ud) :=
d∏

j=1

uj , u1, . . . , ud ∈ [0, 1].
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Copulas and dependence structures
First examples

Comonotonicity copula:

• Consider for U ∼ U [0, 1] the vector (U, . . . ,U).

• The joint distribution of (U, . . . ,U) is the comonotonicity copula

Md(u1, . . . , ud) := min{u1, . . . , ud}, u1, . . . , ud ∈ [0, 1].
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Copulas and dependence structures
First examples

Countermonotonicity copula:

• Consider for U ∼ U [0, 1] the vector (U, 1− U).

• The joint distribution of (U, 1− U) is the countermonotonicity copula

W2(u1, u2) := (u1 + u2 − 1) 1{u1+u2≥1}, u1, u2 ∈ [0, 1].
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Copulas and dependence structures
Remark 2 (Alternative definition of a copula)
A copula is a function C : [0, 1]d → [0, 1] that satisfies the properties:

(i) Groundedness: Whenever at least one argument uj = 0, then C(u1, . . . , ud) = 0. This reflects

0 ≤ P(U1 ≤ u1, . . . ,Uj ≤ 0, . . . ,Ud ≤ ud) ≤ P(Uj ≤ 0) = 0.

(ii) Normalized marginals: C(1, . . . , 1, uj , 1 . . . , 1) = uj , for uj ∈ [0, 1]. This reflects the uniform
marginals property, since

P(U1 ≤ 1, . . . ,Uj ≤ uj , . . . ,Ud ≤ 1) = P(Uj ≤ uj) = uj .

(iii) d-increasingness: For each d-dimensional rectangle ×d
j=1[aj , bj ], being a subset of [0, 1]d , one

has:

0 ≤
∑

(c1,...,cd )∈×d
j=1{aj ,bj}

(−1)|{j:cj=aj}|C(c1, . . . , cd) ≤ 1.
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Copulas and dependence structures
Sklar’s Theorem

Theorem 2 (Sklar’s Theorem)
A function F : Rd → [0, 1] is the distribution function of some random vector (X1, . . . ,Xd) if and only if
there exist a copula C : [0, 1]d → [0, 1] and univariate distribution functions F1, . . . ,Fd : R→ [0, 1],
such that

C
(
F1(x1), . . . ,Fd(xd)

)
= F (x1, . . . , xd), x1, . . . , xd ∈ R. (1)

The distribution function of component Xj equals Fj , j = 1, . . . , d, and the link between F and C is
one-to-one if all functions F1, . . . ,Fd are continuous.

Remark 3
Sklar’s Theorem allows to subdivide the handling of the probability law of a random vector (X1, . . . ,Xd)
into two subsequent tasks:

1. Handling of the one-dimensional marginal distribution functions.
2. Handling of the isolated dependence structure in the form of a copula.

PD Dr. Aleksey Min (TUM) 42



Copulas and dependence structures
Sklar’s Theorem

Remark 4 (Uniqueness of the copula fails for non-continuous margins)
If the marginals F1, . . . ,Fd are not continuous, then there exist at least two copulas C1 6= C2 both
satisfying

C1
(
F1(x1), . . . ,Fd(xd)

)
= F (x1, . . . , xd) = C2

(
F1(x1), . . . ,Fd(xd)

)
for all x1, . . . , xd ∈ R. In most financial applications of copulas the margins are continuous, so this
ambiguity is not an issue.
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Copulas and dependence structures
Sklar’s Theorem

Corollary 1
Take the notations from Theorem 2 and assume the marginals are continuous. Then, for any random
vector (X1, . . . ,Xd) ∼ F, we have

(U1, . . . ,Ud) :=
(
F1(X1), . . . ,Fd(Xd)

)
∼ C. (2)

On the other hand, for any random vector (U1, . . . ,Ud) ∼ C, it holds

(X1, . . . ,Xd) :=
(
F−1

1 (U1), . . . ,F−1
d (Ud)

)
∼ F , (3)

and

C(u1, . . . , ud) = F
(
F−1

1 (u1), . . . ,F−1
d (ud)

)
, u1, . . . , ud ∈ (0, 1).

Remark: In this chapter, generalized inverses are denote by F−1
i .
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Copulas and dependence structures
Sklar’s Theorem

Sklar’s Theorem can be applied in two directions:

(a) Analyzing distribution functions:
F  C ⊕ (F1, . . . ,Fd).

(i) Analyze the univariate marginals (i.e. F1, . . . ,Fd ), using either a parametric or a nonparametric
approach.

(ii) Analyze the remaining dependence (i.e. C).

(b) Constructing distribution functions:

C ⊕ (F1, . . . ,Fd) F .
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Copulas and dependence structures
Sklar’s Theorem

(a) Analyzing distribution functions – the marginals

(i) Parametric approach:
− Assumption: Marginal Fj stems from a certain parametric family of distribution functions, e.g.

Fj(x) = 1− exp(−λj x), x ≥ 0.

− Aim: Estimate the unknown parameter(s), e.g. the parameter λj > 0.

− Advantage: Estimation routines for the parameters are known for many popular parametric
families, e.g. in the exponential case λ̂j,n = n/

∑n
i=1 X (i)

j . The fitted model can be used in all
further investigations, e.g. the estimation of the dependence structure.

− Disadvantage: The observed data might not be explained very good by any member of the
assumed parametric family (i.e. model risk).
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Copulas and dependence structures
Sklar’s Theorem

(a) Analyzing distribution functions – the marginals

(ii) Non-parametric approach:
− Advantage: The whole function x 7→ Fj(x) is estimated from the data, no (or only a little)

pre-knowledge is needed.

− Example: “Empirical distribution function”, which is defined by

F̂j,n(x) :=
1
n

n∑
i=1

1{X (i)
j ≤x}, x ∈ R,

which is well-known to converge almost surely and uniformly in x to the true distribution function
Fj of Xj , as n→∞.
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Copulas and dependence structures
Sklar’s Theorem

(a) Analyzing distribution functions – the copula

• Given: Estimated marginals F̂1,n, . . . , F̂d ,n.

• Recall (U1, . . . ,Ud) :=
(
F1(X1), . . . ,Fd(Xd)

)
∼ C if the margins are continuous.

• The random vectors(
Û(i)

1 , . . . , Û(i)
d

)
:=
(
F̂1,n(X (i)

1 ), . . . , F̂d ,n(X (i)
d )
)
, i = 1, . . . , n,

are called “pseudo-observations”.

• Estimate the copula C based on these samples:

(i) Parametric approach, e.g. compute empirical counterparts to copula-based dependence
measures or use maximum-likelihood.

(ii) Non-parametric approach, e.g. multivariate empirical distribution function.

PD Dr. Aleksey Min (TUM) 48



Copulas and dependence structures
Example: Realizations of (τ1, τ2). Can you guess the dependence?
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Copulas and dependence structures
Step 1: Identify the marginals
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Copulas and dependence structures
Step 2: Transform marginals to pseudo-observations on [0, 1]2
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Copulas and dependence structures
Surprise, it actually was independence!
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Copulas and dependence structures
Sklar’s Theorem

(b) Constructing distribution functions

• Given: Copula C and univariate distribution functions F1, . . . ,Fd .

• Aim: Multivariate distribution function F .

• Think of situations when:
− There is good knowledge about the single components (i.e. F1, . . . ,Fd ) but
− little knowledge about the dependence structure (i.e. C).
− Provided only a few observations, a high-dimensional model must be inferred (e.g. portfolio

credit-risk modeling).

• Approach: Choose C from some flexible, parametric family of copulas, and fit the parameter(s) to
the limited observable data.

• Problem: Lots of assumptions on the underlying copula are necessary.
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Basic rules for working with copulas
Fréchet–Hoeffding bounds

Definition 6 (Fréchet–Hoeffding bounds)
The Fréchet–Hoeffding bounds for a d−dimensional copula are defined as

Wd(u1, . . . , ud) := max{u1 + . . . + ud − (d − 1), 0} (“lower Fréchet–Hoeffding bound”),
Md(u1, . . . , ud) := min{u1, . . . , ud} (“upper Fréchet–Hoeffding bound”).

Theorem 3 (Fréchet–Hoeffding bounds)
Let C : [0, 1]d → [0, 1] be an arbitrary copula. Then C is bounded by

Wd(u1, . . . , ud) ≤ C(u1, . . . , ud) ≤ Md(u1, . . . , ud), u1, . . . , ud ∈ [0, 1].

These bounds are sharp in the sense that Md is itself a copula, and for each point
u := (u1, . . . , ud) ∈ [0, 1]d one can find a copula Cu satisfying the equality

Cu(u1, . . . , ud) = Wd(u1, . . . , ud).
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Basic rules for working with copulas
Fréchet–Hoeffding bounds

Remark 5
1. The Fréchet–Hoeffding bounds might be viewed as the extreme cases of most negative and most

positive dependence.

2. A random vector (U1, . . . ,Ud) has Md as joint distribution function if and only if U1 = . . . = Ud

holds with probability one, Md is the “comonotonicity copula”.

3. Wd is a copula only for d = 2 (“countermonotonicity copula”). (U1,U2) has W2 as joint distribution
function if and only if U1 = 1− U2 holds with probability one.
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Basic rules for working with copulas
Fréchet–Hoeffding bounds

“Middle case” of stochastic independence: Unlike a linear correlation coefficient of 0, the
“independence copula” or “product copula”

Πd(u1, . . . , ud) = u1 · u2 · · · ud

really means stochastic independence.

Lemma 2 (Independence⇔ C = Πd)
A random vector (X1, . . . ,Xd) has stochastically independent components if and only if its distribution
function can be split into its marginals and the copula Πd , i.e.

F (x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤ xd)

= P(X1 ≤ x1) · . . . · P(Xd ≤ xd)

= Πd
(
F1(x1), . . . ,Fd(xd)

)
.
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Basic rules for working with copulas
Invariance under strictly monotone transformations

Recall: Transforming the components of a random vector (X1, . . . ,Xd) changes its distribution
function. However, the dependence structure is not affected by strictly monotone transformations.

Lemma 3 (Strictly monotone transformations)
Let (X1, . . . ,Xd) be a random vector with continuous marginals and copula C. For functions
g1, . . . , gd : R→ R, which are strictly increasing on the range of the respective components, the
copula of

(
g1(X1), . . . , gd(Xd)

)
is again C.
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Basic rules for working with copulas
Invariance under strictly monotone transformations

Remark 6 (Where is this useful?)
This allows to change marginals of a random vector at one’s personal taste:

• Let (X1, . . . ,Xd) have strictly increasing and continuous marginals F1, . . . ,Fd .

• Let F̃1, . . . , F̃d be strictly increasing and continuous distribution functions.

• Define (X̃1, . . . , X̃d) by X̃i = F̃−1
i ◦ Fi(Xi), such that X̃i ∼ F̃i .

• Lemma 3 shows that the copula is not affected by such a transformation.

• An example is the “probability integral transformation”

(U1, . . . ,Ud) :=
(
F1(X1), . . . ,Fd(Xd)

)
that standardizes the margins to uniform distributions on [0, 1].
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Basic rules for working with copulas
Invariance under strictly monotone transformations

Example 1 (Where is this useful in practice?)
For the dependence structure (i.e. copula) it does not matter whether one . . .

• looks at values of stock prices or at their logarithmic values,

• converts prices in other currencies by multiplication with FX rates,

• changes the scale of credit spreads from percent into basis points.

This invariance of the copula under strictly increasing margin transformations is not shared by the
popular concept of correlation coefficients!
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Basic rules for working with copulas
Invariance under strictly monotone transformations

Corollary 2 (C = Md ⇔ comonotonicity)
A random vector (X1, . . . ,Xd) with marginals F1, . . . ,Fd has copula Md if and only if

(X1, . . . ,Xd)
d
=
(
F−1

1 (U), . . . ,F−1
d (U)

)
, U ∼ U [0, 1].

The symbol d
= means equality in distribution.

Corollary 3 (C = W2 ⇔ countermonotonicity)
A bivariate random vector (X1,X2) with marginals F1,F2 has copula W2 if and only if

(X1,X2)
d
=
(
F−1

1 (U),F−1
2 (1− U)

)
, U ∼ U [0, 1].
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Basic rules for working with copulas
Computing probabilities from a distribution function

Given: The distribution function F of some random vector (X1, . . . ,Xd).

Aim: Calculate probabilities such as:

P(a1 < X1 ≤ b1, . . . , ad < Xd ≤ bd), −∞ < aj < bj <∞, j = 1, . . . , d .

Ansatz: The general formula is:

P(a1 < X1 ≤ b1, . . . , ad < Xd ≤ bd) =
∑

(c1,...,cd )∈×d
j=1{aj ,bj}

(−1)|{j:cj=aj}|F (c1, . . . , cd)

= F (b1, . . . , bd)− F (a1, b2, . . . , bd)− . . .− F (b1, . . . , bd−1, ad)

+ F (a1, a2, b3, . . . , bd) + . . . + F (b1, . . . , bd−2, ad−1, ad)

− F (a1, a2, a3, b4, . . . , bd)− . . . . . . + (−1)d F (a1, . . . , ad).

Problem: Calculating this sum is numerically challenging.
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Basic rules for working with copulas
Copula derivatives

Definition 7
A copula C is called “absolutely continuous”, if it admits the integral representation

C(u1, . . . , ud) =

∫ u1

0

∫ u2

0
. . .

∫ ud

0
c(v1, . . . , vd) dvd dvd−1 . . . dv1,

for a non-negative function c : (0, 1)d → [0,∞), called the “(copula) density” of C.

Remark 7
• It follows that the density of C – provided it exists – can be computed as

c(u1, . . . , ud) =
∂

∂u1

∂

∂u2
. . .

∂

∂ud
C(u1, . . . , ud). (4)

• Compared to the copula, the copula density has the advantage that it visualizes nicely where the
probability mass is located.
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Basic rules for working with copulas
Copula derivatives

Example 2 (The bivariate Gaussian copula)
The most prominent absolutely continuous copula is the bivariate “Gaussian copula”, which is defined
in integral form by:

Cρ(u1, u2) =

∫ u1

0

∫ u2

0
cρ(v1, v2) dv2 dv1,

cρ(u1, u2) =
1√

1− ρ2
exp

(
2 ρΦ−1(u1) Φ−1(u2)− ρ2

(
Φ−1(u1)2 + Φ−1(u2)2

)
2 (1− ρ2)

)
,

for a dependence parameter ρ ∈ (−1, 1). Φ(x) :=
∫ x
−∞ exp(−y2/2) dy/

√
2π denotes the distribution

function of a standard normally distributed random variable.
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Basic rules for working with copulas
Copula derivatives

u1
0.0
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1.0

u2
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1.0
0

2

4

copula density: ρ=−0.5
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1.0
0
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2

copula density: ρ=0.0
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u2

0.0

0.5

1.0
0
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copula density: ρ=0.5
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1.0

u2

0.0

0.5

1.0
0

10

20

copula density: ρ=0.95

Copula density cρ(u1, u2) of a bivariate Gaussian copula for increasing ρ.
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How to measure dependence?

Problem: Dependence is not a simple mathematical object, making it difficult to communicate
information like the “degree-”, “level-”, or “type-of-dependence”.

Simplification: Compress information about the dependence structure into a single number that
quantifies the degree of dependence on some scale (e.g. −1 to +1).

• Mapping from the set of copulas to the real numbers (one loses information).

• Several concepts exist, each covering only a certain aspect of the dependence structure (e.g.
Pearson’s correlation: linear dependence). Which one to choose depends on the application.

• Dependence measures can be used to estimate parameters of copulas by comparing a theoretical
dependence measure with the empirical counterpart.

• For several dependence measures we have empirical estimates with known finite sample (or
asymptotic) distribution (useful, e.g. for hypothesis tests).
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Pearson’s correlation coefficient
Definition 8 (Pearson’s correlation coefficient and its sample version)
Consider the random vector (X1,X2) and assume X1 and X2 are square integrable.

1. “Pearson’s correlation coefficient” is defined as

ρ = cor(X1,X2) : =
cov(X1,X2)√

Var(X1)
√
Var(X2)

=
E[(X1 − E[X1])(X2 − E[X2])]√

E[(X1 − E[X1])2]
√
E[(X2 − E[X2])2]

.

2. Given iid observations
(
X (1)

1 ,X (1)
2

)
, . . . ,

(
X (n)

1 ,X (n)
2

)
from (X1,X2), the empirical (or sample)

estimate for the correlation is

ρ̂n :=

∑n
i=1(X (i)

1 − X̄1)(X (i)
2 − X̄2)√∑n

i=1(X (i)
1 − X̄1)2

√∑n
i=1(X (i)

2 − X̄2)2
,

where X̄j := 1
n

∑n
i=1 X (i)

j , j = 1, 2.
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Pearson’s correlation coefficient
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Pearson’s correlation coefficient
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Scatter plots of four situations, where in each case the theoretical correlation is zero.
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Concordance measures
Definition 9 (Concordant / discordant pairs)
We say that (x1, x2) and (y1, y2) are concordant if

(x1 − y1) (x2 − y2) > 0

resp. discordant if (x1 − y1) (x2 − y2) < 0.

Example 3
To visualize concordance connect points with straight lines. Whenever the connecting line of a pair has
positive slope we have concordance. Each concordant (discordant) pair is connected with a solid
(dashed) line.

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6
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Concordance measures
Definition 10 (Kendall’s τ )

1. Consider the random vector (U1,U2) with copula C as joint distribution function. Then, “Kendall’s
τ ” is defined as

τ = τC := 4
∫ 1

0

∫ 1

0
C(u1, u2) dC(u1, u2)− 1 = 4E

[
C(U1,U2)

]
− 1. (5)

2. For general bivariate random vectors (X1,X2) with continuous marginals, Kendall’s τ is defined by
applying the above Equation (5) to the unique copula of (X1,X2), irrespectively of the marginals.

Advantage: This is only a function of the copula, the marginals are not involved.

Question: Is there a link to concordance and discordance?
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Concordance measures
Lemma 4 (Original definition, properties and empirical version of Kendall’s τ )

(a) Let (U1,U2) ∼ C and (V1,V2) ∼ C be independent. Then Kendall’s τ equals

τ = P
(

(U1 − V1) (U2 − V2) > 0︸ ︷︷ ︸
concordance

)
− P

(
(U1 − V1) (U2 − V2) < 0︸ ︷︷ ︸

discordance

)
.

− Empirical version for iid samples (X (1)
1 ,X (1)

2 ), . . . , (X (n)
1 ,X (n)

2 ):

τ̂n : =
# of concordant pairs− # of discordant pairs

# of all pairs

=

∑
1≤i<j≤n sign

[
(X (j)

1 − X (i)
1 ) (X (j)

2 − X (i)
2 )
]

n(n − 1)/2
.

− For data with ties, there exist modified versions.

− For abs. continuous margins F1 and F2 we have (X1 − Y1) (X2 − Y2) > 0 if and only if(
F1(X1)− F1(Y1)

) (
F2(X2)− F2(Y2)

)
> 0 (follows from F1,F2 strictly increasing), i.e. Kendall’s τ

only depends on C, not on F1, F2.
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Concordance measures

Lemma 4 (Original definition, properties and empirical version of Kendall’s τ ) (cont.)

(b) Kendall’s τ is increasing in the point-wise ordering of copulas:

− If C(u1, u2) ≤ C̃(u1, u2) for all (u1, u2) ∈ [0, 1]2 then τC ≤ τC̃.

Moreover,

− Kendall’s τ of the independence copula is zero: τΠ2 = 0.

− τC = 1 if and only if C = M2 (comonotonicity copula).

See [Nelsen (2006), Theorem 5.1.9] for a proof that Kendall’s τ is a measure of concordance and
hence satisfies these properties.
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Concordance measures

Lemma 4 (Original definition, properties and empirical version of Kendall’s τ ) (cont.)

(c) There exist reformulations of the analytical expression:

τC = 1− 4
∫ 1

0

∫ 1

0

∂

∂u1
C(u1, u2)

∂

∂u2
C(u1, u2)du1 du2

= 4
∫ 1

0

∫ 1

0
C(u1, u2)

∂2

∂u1 ∂u2
C(u1, u2) du1 du2 − 1,

where the last expression requires C to be absolutely continuous.
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Concordance measures

Another quite popular dependence measure is Speaman’s ρS.

Definition 11 (Spearman’s ρS)
Let (X1,X2) be a random vector with continuous marginal laws Xj ∼ Fj . Define

(U1,U2) :=
(
F1(X1),F2(X2)

)
.

Then, “Spearman’s ρS” is defined as Pearson’s correlation coefficient of (U1,U2), i.e.

ρS := ρS,C = cor(U1,U2) = cor
(
F1(X1),F2(X2)

)
. (6)

Advantages:

• Spearman’s ρS does not depend on the marginal laws Fj , j = 1, 2 (their influence is removed by
the transformation to uniform marginals).

• Unlike for Pearson’s correlation, we do not have to worry about existence of ρS, since Uj ∼ U [0, 1],
j = 1, 2 are square integrable.
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Concordance measures
Lemma 5 (Properties of Spearman’s ρS and its empirical version)

(a)− Symmetry: (X1,X2) and (X2,X1) have the same ρS.

− Spearman’s ρS is zero for the independence copula: ρS,Π2 = 0.

− ρS,C = 1 if and only if C = M2 (comonotonicity copula).

− Again, we have ordering according to the point-wise ordering of copulas, i.e.
C(u1, u2) ≤ C̃(u1, u2) for all (u1, u2) ∈ [0, 1]2 implies

ρS,C ≤ ρS,C̃.

− Let C be a copula and Ĉ its survival copula. Then

ρS,C = ρS,Ĉ.

See [Nelsen (2006), Theorem 5.1.9] for the proofs.
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Concordance measures

Lemma 5 (Properties of Spearman’s ρS and its empirical version) (cont.)

(b) Consider an iid sample
(
X (1)

1 ,X (1)
2

)
, . . . ,

(
X (n)

1 ,X (n)
2

)
from (X1,X2) (with continuous margins, to

avoid ties). The empirical (or sample) estimate of Spearman’s ρS is the empirical correlation of the
rank statistics of the sample values

ρ̂S,n :=

∑n
i=1

(
rank(X (i)

1 )− n+1
2

) (
rank(X (i)

2 )− n+1
2

)√∑n
i=1

(
rank(X (i)

1 )− n+1
2

)2
√∑n

i=1

(
rank(X (i)

2 )− n+1
2

)2
,

Again, this becomes more involved in the presence of ties.

(c) Equivalent definitions:

ρS,C = 12
∫ 1

0

∫ 1

0

(
C(u1, u2)− u1 u2

)
du1 du2

= 3
(
P
(
(U1 − V1) (U2 −W2) > 0

)
− P

(
(U1 − V1) (U2 −W2) < 0

))
,

for independent copies (U1,U2), (V1,V2), and (W1,W2) with distribution fct. C.
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Concordance measures
Remark 8
The term (n + 1)/2 in the definition of ρ̂S,n is simply the averages of the rank statistics – if you add up
the first n ranks, this is the same as adding up the natural numbers until n. Deviding by n to get the
average yields the result.

Example 4 (“Ranks”)
Consider the observations in the Table. The empirical Spearman’s ρS is ρ̂S,5 = 0.7.

i 1 2 3 4 5 i 1 2 3 4 5

X (i)
1 1.1 2.3 4.9 0.5 5.5 X (i)

2 0.9 1.2 5.2 3.3 6.0

rank(X (i)
1 ) 2 3 4 1 5 rank(X (i)

2 ) 1 2 4 3 5
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Concordance measures

Applications of Kendall’s τ and Spearman’s ρS:

(a) Dependence measuring: Measure the strength of dependence implied by some copula or being
empirically observed in some set of data.

(b) Testing for independence: Use the empirical versions of Kendall’s τ and Spearman’s ρS to test
the hypothesis H0: X1 and X2 are independent.

(c) Parameter estimation: For a bivariate copula from a one-parameter family, express Kendall’s τ
and Spearman’s ρS as functions of the parameter and estimate the parameter using the empirical
Kendall’s τ and Spearman’s ρS.
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Concordance measures

(b) Testing for independence:

• Given: iid observations
(
X (1)

1 ,X (1)
2

)
, . . . ,

(
X (n)

1 ,X (n)
2

)
from (X1,X2).

• Test hypothesis: H0: X1 and X2 are independent.

• Approach: Test if τ̂n and ρ̂S,n are significantly different from zero. In that case we reject H0.

• Intuition: If H0 is correct, then the empirical versions τ̂n and ρ̂S,n must be “close to” zero, since
this is the theoretical value under H0.

− Exact (or asymptotic for big n) distribution of τ̂n and ρ̂S,n is needed.
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Concordance measures

(c) Parameter estimation:

• Situation: Many families of bivariate copulas are parameterized by a single parameter, θ. Let the
copula of (X1,X2) be from such a one-parameter family.

• Aim: Estimate θ given iid observations
(
X (1)

1 ,X (1)
2

)
, . . . ,

(
X (n)

1 ,X (n)
2

)
from (X1,X2).

• Approach:

(i) Express Kendall’s τ and Spearman’s ρS as functions of this parameter, τ = f (θ) and ρS = g(θ).
In most cases f and g have inverses f−1 and g−1.

(ii) Calculate the empirical versions of Kendall’s τ or Spearman’s ρS, τ̂n or ρ̂S,n from the sample.

(iii) Use θ̂n := f−1(τ̂n) or θ̂n := g−1(ρ̂S,n) as an estimator for θ. This estimation methodology will later
be explained in more detail.
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Concordance measures

Motivation of tail dependence:

• In financial applications we are often concerned with problems such as:

− Modeling the probability of joint defaults in credit portfolios where each default event has a small
probability.

− Joint drop of two (or more) stocks.

• In both cases, not the “center of the joint distribution” matters, but the “tails”.

• Often, it is reasonable to argue that dependence increases for adverse events.

− Possible reasons: herd behavior (panic selling), technical (broken limits), ...

− Thus, diversification often breaks down just when it is needed the most.

• Tail dependence relates to questions like “given X1 is extreme, what is the conditional
probability of X2 being also extreme?”.
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Tail dependence
Definition 12 (Tail dependence)
The lower- and upper-tail dependence coefficients of (X1,X2) with copula C are

LTDC := lim
α↘0

P
(
X1 ≤ F−1

1 (α)|X2 ≤ F−1
2 (α)

)
= lim

u↘0

C(u, u)

u
, (7)

UTDC := lim
α↗1

P
(
X1 > F−1

1 (α)|X2 > F−1
2 (α)

)
= lim

u↗1

C(u, u)− 2 u + 1
1− u

, (8)

provided that these limits exist.

Dependence for “black-swan events”.
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Tail dependence
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Scatter plots of three different copulas and zoom into the corners. Clayton: positive LTD, zero UTD;
Gaussian: zero LTD, zero UTD; Gumbel: zero LTD, positive UTD.
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Lecture II

Archimedean and elliptical copulas
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Archimedean copulas
Definition 13 (Archimedean copula)
A copula Cϕ : [0, 1]d → [0, 1] is an Archimedean copula if it has the functional form

Cϕ(u1, . . . , ud) = ϕ
(
ϕ−1(u1) + . . . + ϕ−1(ud)

)
, (9)

for a suitable, non-increasing function ϕ : [0,∞)→ [0, 1] with ϕ(0) = 1 and limx→∞ ϕ(x) = 0, called
“(Archimedean) generator”.

Example 5 (The independence copula is an Archimedean copula)
The function ϕ(x) = exp(−x) is an Archimedean generator, ϕ−1(y) = − log(y). Plugging it into
Equation (9), we observe that Cϕ = Π.
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Archimedean copulas: Generator
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Archimedean copulas: Why “Archimedean“ copulas?
Archimedean Axiom

∀a, b ∈ R+ such that a < b ∃n ∈ N with na > b

Define C-powers un
C of u recursively:

u1
C = u

un+1
C = C(u, un

C)

Archimedean Axiom for copulas
Let C be an Archimedean copula generated by ϕ.
Then for any u, v ∈ (0, 1) such that u > v ∃n ∈ N with un

C < v .

Proof.
By induction is un

C = ϕ
[
nϕ−1(u)

]
.

Since ϕ−1(u), ϕ−1(v) > 0 ⇒ ∃n ∈ N such that nϕ−1(u) > ϕ−1(v).

But since v > 0,ϕ(v) < ϕ(0), and hence:

v = ϕ
[
ϕ−1(v)

]
> ϕ

[
nϕ−1(u)

]
= un

C
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Archimedean copulas
Definition 14 (Completely monotone generator)
Φ∞ denotes the set of all “completely monotone” generators, i.e. all ϕ with:

• ϕ is continuous at zero and ϕ(0) = 1,

• ϕ is infinitely often differentiable on the interior of its domain (0,∞), and

• the derivatives satisfy (−1)k ϕ(k)(x) ≥ 0 for all x > 0, k ∈ N0, where ϕ(k) denotes the k-th
derivative of ϕ and ϕ(0) := ϕ.

Lemma 6
Let ϕ ∈ Φ∞. Then Cϕ is a proper distribution function in each dimension d ≥ 2.
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Archimedean copulas
Remark 9 (Parameterization of Archimedean copulas)
• Archimedean copulas form an infinite-dimensional space, because they are parameterized by a

function ϕ instead of parameters.

• However, in practice, one usually chooses a parametric family of Laplace transforms, i.e. ϕ = ϕθ
for a real parameter θ. In this case, we write Cϕθ = Cθ.

Example 6 (Some popular Archimedean copulas)
The table gathers the most popular Archimedean copulas and their generators.

ϕθ(x) ϕ−1
θ (y) θ ∈ name of copula Kendall’s τ

(1 + x)−1/θ y−θ − 1 (0,∞) Clayton θ/(2 + θ)

e−x1/θ (
− log(y)

)θ
[1,∞) Gumbel (θ − 1)/θ

1−θ
ex−θ log

(
1−θ

y + θ
)

[0, 1) Ali–Mikhail–Haq 1− 2
(
θ + (1− θ)2 log(1− θ)

)
/(3 θ2)
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Archimedean copulas
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Generators (top) and scatter plots (bottom) for the Clayton, Gumbel, and Ali–Mikhail–Haq (AMH) copula.
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Archimedean copulas
Remark 10 (Important stylized facts of Archimedean copulas)

(a) Dependence range:

• One can show that for every Laplace transform ϕ, it holds true that Cϕ ≥ Π pointwise:

− Negative dependence cannot be modeled by Archimedean copulas with completely monotone
generators.

− Concordance measures are non-negative.

• Typical Archimedean families include the independence copula Π and the upper
Fréchet–Hoeffding bound as boundary cases.

(b) Symmetries:

• Archimedean copulas are exchangeable, due to their algebraic expression, even for d > 2.
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Archimedean copulas

Remark 10 (Important stylized facts of Archimedean copulas) (cont.)

(c) Concordance measures:

• Formulas for concordance measures of arbitrary Archimedean copulas are only given in terms of
an integral involving the function ϕ:

τ = 1− 4
∫ ∞

0
x ·

(
ϕ(1)(x)

)2 dx , (Kendall’s τ ) (10)

ρS = 12
∫ 1

0

∫ 1

0
Cϕ(u1, u2) du2 du1 − 3. (Spearman’s ρS) (11)

The formula for Spearman’s ρS is actually valid for any copula, not only Archimedean ones, see
Definition 11.

• Whether this can be computed in closed form depends on the generator.
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Archimedean copulas

Remark 10 (Important stylized facts of Archimedean copulas) (cont.)

(d) Tail dependence coefficients:

• The upper- and lower-tail dependence coefficients are given by the following formulas – provided
the respective limits exist:

LTDCϕ = 2 · lim
x↗∞

ϕ(1)(2 x)

ϕ(1)(x)
= lim

x↗∞

ϕ(2 x)

ϕ(x)
,

UTDCϕ = 2− 2 · lim
x↓0

ϕ(1)(2 x)

ϕ(1)(x)
.

− Archimedean copulas allow for asymmetric tail dependence coefficients.

− Revisiting the examples from the table:

Clayton: LTDθ = 2−1/θ, UTDCθ = 0,

Gumbel: LTDθ = 0, UTDθ = 2− 21/θ,

Ali–Mikhail–Haq: LTDθ = 0, UTDθ = 0,
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Archimedean copulas

Remark 10 (Important stylized facts of Archimedean copulas) (cont.)

(e) Density:

• Archimedean copulas with completely monotone generator are absolutely continuous.

− The density is obtained by taking iteratively the partial derivatives of Cϕ(u1, . . . , ud) with respect
to all components u1, . . . , ud .

− In dimension d = 2, this yields the density:

cϕ(u1, u2) =
∂2

∂u1 ∂u2
Cϕ(u1, u2) =

ϕ(2)
(
ϕ−1(u1) + ϕ−1(u2)

)
ϕ(1)

(
ϕ−1(u1)

)
ϕ(1)

(
ϕ−1(u2)

), u1, u2 ∈ (0, 1).

• Computing the density in larger dimensions d ≥ 2 becomes burdensome due to the involved
d-fold derivative ϕ(d).
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Elliptical copulas: Elliptical distributions
Definition 7
Let Sd denote the space of all symmetric d × d matrices. A random vector X = (X1, . . . ,Xd)′ ∈ Rd is
said to have an (non-degenerate) elliptical distribution with parameters µ ∈ Rd and
Σ = (σk`)k ,`∈{1,...,d} ∈ Sd , if

X = µ + AY,

where Y has a m-dimensional spherical distribution and A is d ×m matrix such that AA′ = Σ with
rank(Σ) = m.

Remark 11
A random vector X = (X1, . . . ,Xd)′ ∈ Rd is said to have an (non-degenerate) elliptical distribution with
parameters µ ∈ Rd ,Σ = (σk`)k ,`∈{1,...,d} ∈ Sd and the generator function g, if its characteristic function
E(exp(it>X)) with t ∈ Rd has the representation

exp(itTµ)g(tT Σt)

for some scalar function g.

Definition 8
Elliptical copulas are the copulas of elliptical distributions.
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Gaussian copulas

Recall: If Y1, . . . ,Yd are iid standard normally distributed random variables, µ1, . . . , µd ∈ R, and
A = (ai,j) ∈ Rd×d a matrix with full rank, the random vector

X :=

X1
...

Xd

 =

µ1
...
µd

+ A ·

Y1
...

Yd

 =

µ1 + a1,1 Y1 + . . . + a1,d Yd
...

µd + ad ,1 Y1 + . . . + ad ,d Yd

 ∈ Rd (12)

is said to have a multivariate normal distribution.

• Marginals: For each j = 1, . . . , d , Xj ∼ N (µj , σ
2
j ) with σ2

j :=
∑d

l=1 a2
j,l .

• Correlation matrix: Denote by Σ := (ρj,k)j,k=1,...,d the correlation matrix of (X1, . . . ,Xd), i.e. for
j, k = 1, . . . , d :

ρj,k = cor(Xj ,Xk).

• Copula: Since the marginal laws are continuous (univariate normals), the copula of (X1, . . . ,Xd) is
unique by virtue of Sklar’s Theorem 2.
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Gaussian copulas
Definition 15 (Gaussian copula)
The copulas of multivariate normal distributions, see the stochastic model from Equation (12), are
called “Gaussian copulas”.

Remark 12 (The parameters of a Gaussian copula)
• A Gaussian copula is independent of µ1, . . . , µd and σ2

1, . . . , σ
2
d .

• Consequently, it is parameterized solely by Σ and we denote it by CΣ.

• Thus the bivariate pairs / pair correlations already specify the copula.
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Gaussian copulas
Example 7 (The bivariate case)
For d = 2 the Gaussian copula depends on a single parameter ρ := ρ1,2 = ρ2,1, due to symmetry of
the correlation coefficient, since in this case

Σ =

(
1 ρ
ρ 1

)
Thus, we denote the bivariate Gaussian copula by Cρ instead of CΣ. It is given by

Cρ(u1, u2) =

∫ u1

0

∫ u2

0

exp
(

2 ρΦ−1(v1) Φ−1(v2)−ρ2
(

Φ−1(v1)2+ Φ−1(v2)2
)

2 (1−ρ2)

)
√

1− ρ2
dv2 dv1, (13)

where Φ denotes the standard normal distribution function.

Observation:
(i) Cρ is absolutely continuous, the density is the integrand in Equation (13).

(ii) Both the numerical evaluation and the analytical study of the Gaussian copula are burdensome
because of the appearing double integral.
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Gaussian copulas

The normal law is omnipresent in applications. Why so?

Some reasons are:

(a) Natural appearance:

− Consider a random vector X with existing mean vector µ and existing covariance matrix Σ.

− Let X(1), . . . ,X(n) be n iid samples from X, e.g. the same experiment repeated n times.

− The (multivariate) central limit theorem states that the
√

n-scaled deviation from the mean

1√
n

n∑
i=1

(X(i) − µ)

has approximately a multivariate normal law with zero mean vector and covariance matrix Σ.
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Gaussian copulas

The normal law is omnipresent in applications. Why so?

Some reasons are:

(b) Mathematical tractability:

− The multivariate normal distribution has an intrinsic, close connection to the theory of linear
algebra.

− For instance, if X is multivariate normal with mean vector µ ∈ Rd and covariance matrix
Σ ∈ Rd×d , and A ∈ Rm×d , then A X is multivariate normal with mean vector Aµ ∈ Rm and
covariance matrix A Σ A′ ∈ Rm×m.

− Therefore, many applications can be deduced by resorting to the well-established apparatus of
linear algebra.
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Gaussian copulas

The normal law is omnipresent in applications. Why so?

Some reasons are:

(c) Convenient parameterization:

− The mean vector and covariance matrix specify the distribution completely.

− A finite number of parameters is a very convenient assumption for applications, in particular in
large dimensions.

− It is not too difficult to construct low-parametric families of multivariate normal distributions even
for very large dimensions.
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Gaussian copulas

The normal law is omnipresent in applications. Why so?

Some reasons are:

(d) Intuitive stochastic model:

− The covariance matrix Σ specifies a certain “dispersion area” around the expected mean µ.

− Many applications rely on the idea of modeling an expected outcome and a dispersion around it,
for which the normal distribution is a natural candidate.

− Warning! If the phenomenon to be modeled does not fit the interpretation of a dispersion
around a mean, the use of a multivariate normal distribution model is actually not justified.
However, in the past it has often been applied in such situations, especially in Finance.
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Gaussian copulas

The normal law is omnipresent in applications. Why so?

Some reasons are:

(e) Common ground:

− Everyone knows the multivariate normal distribution.

As a consequence of these reasons, the multivariate normal distribution is by far the most popular
distribution in financial (and many other) applications.
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Gaussian copulas
Remark 13 (Important stylized facts of the bivariate Gaussian copula)

(a) Dependence range:

− With ρ ranging in [−1, 1], the Gaussian copula Cρ interpolates between the lower
Fréchet–Hoeffding bound and the upper Fréchet–Hoeffding bound

C−1 = W2, C0 = Π2, and C1 = M2.

− This interpolation property allows to model the full spectrum of dependence and is a very
desirable feature of the model.

− In particular, it provides the parameter ρ with an intuitive meaning: dependence increases with ρ.
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Gaussian copulas

Remark 13 (Important stylized facts of the bivariate Gaussian copula) (cont.)

(b) Concordance measures: The following formulas are known for the bivariate Gaussian copula:

τρ =
2
π

arcsin(ρ), (Kendall’s τ )

ρS =
6
π

arcsin(ρ/2), (Spearman’s ρS)

βρ = τρ =
2
π

arcsin(ρ). (Blomqvist’s β)
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Gaussian copulas

Remark 13 (Important stylized facts of the bivariate Gaussian copula) (cont.)

(c) Symmetries: The Gaussian copula exhibits two very strong symmetries.

(i) It is radially symmetric, i.e. Cρ = Ĉρ (even in all dimensions d).

(ii) The bivariate Gaussian copula is exchangeable, i.e. Cρ(u1, u2) = Cρ(u2, u1).

• On scatter plots the points are scattered symmetrically around the diagonal
{(u1, u2) ∈ [0, 1]2 : u2 = u1}.

In financial modeling, both symmetry properties can lead to serious problems.
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Gaussian copulas

Remark 13 (Important stylized facts of the bivariate Gaussian copula) (cont.)

(c) Symmetries: Scatter plots of the bivariate Gaussian copula with correlations ρ = −0.5 (left),
ρ = 0.25 (middle), and ρ = 0.75 (right). Observe the symmetries.
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Gaussian copulas

Remark 13 (Important stylized facts of the bivariate Gaussian copula) (cont.)

(d) Tail independence:

− For every ρ ∈ (−1, 1), the Gaussian copula exhibits tail independence, i.e. both, the upper- and
the lower-tail dependence coefficient of the bivariate Gaussian copula are zero.

− This might not be desirable in the context of financial modeling.

PD Dr. Aleksey Min (TUM) 108



t-copulas
Definition 16 (Multivariate t-distribution)
Let Y1, . . . ,Yd be iid standard normal random variables, and let W ∼ InvΓ(ν/2, ν/2) for some ν > 0
be independent of Y1, . . . ,Yd . Moreover, let µ1, . . . , µd ∈ R, and A = (ai,j) ∈ Rd×d with full rank. The
random vectorX1

...
Xd

 =

µ1
...
µd

+ A ·
√

W

Y1
...

Yd

 =

µ1 + a1,1
√

W Y1 + . . . + a1,d
√

W Yd
...

µd + ad ,1
√

W Y1 + . . . + ad ,d
√

W Yd

 ∈ Rd (14)

is said to have a “multivariate t-distribution” with ν degrees of freedom.
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t-copulas
Remark 14 (Inverse Gamma distribution)
• Comparing the stochastic models (14) with (12), the sole difference is the appearance of the

inverse Gamma random variable W.

• A random variable W has an inverse Gamma distribution with parameters β, η > 0, we write
W ∼ InvΓ(β, η), if W has probability density function

fW (x) = 1{x>0}
ηβ e−η/x

xβ+1 Γ(β)
.
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t-copulas

• Like Gaussian copulas are derived from multivariate normal laws, t-copulas are associated with
multivariate t-distributions via Sklar’s Theorem.

• The t-copula only depends on the degrees of freedom ν and a correlation matrix Σ ∈ Rd×d , which
is defined by

Σi,j :=

∑d
k=1 ai,k aj,k√∑d

k=1 a2
i,k

∑d
k=1 a2

j,k

, i, j = 1, . . . , d .

We denote it by Cν,Σ.

− Cν,Σ is independent of the means µ1, . . . , µd .

− Be aware that Σ is not the correlation matrix of (X1, . . . ,Xd).

− The degrees of freedom ν also affect the final correlation matrix of

(X1, . . . ,Xd).
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t-copulas
Example 8 (The bivariate case)
For d = 2, Σ has a single parameter ρ, and we denote the bivariate t-copula by Cν,ρ:

Cν,ρ(u1, u2) =

∫ u1

0

∫ u2

0

ν
2 Γ
(
ν
2

)2 (
1 + t−1

ν (v1)2+t−1
ν (v2)2−2 ρ t−1

ν (v1) t−1
ν (v2)

ν (1−ρ2)

)−ν+2
2

√
1− ρ2 Γ

(
ν+1

2

)2 ((
1 + t−1

ν (v1)2

ν

)(
1 + t−1

ν (v2)2

ν

))−ν+1
2

dv2 dv1,

where tν(x) :=
∫ x
−∞(1 + y2/ν)−(ν+1)/2 dy Γ((ν + 1)/2)/

√
ν π/Γ(ν/2) is the distribution function of a

univariate t-distribution with ν degrees of freedom.

Observation:

• This family of copulas is two-parametric.

• For every ν and ρ, Cν,ρ is an absolutely continuous copula.
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t-copulas
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A scatter plot and the density of a bivariate t-copula, as well as the bivariate t-copula itself.
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t-copulas
Remark 15 (Important stylized facts of the bivariate t-copula)

(a) Symmetries: Like the bivariate Gaussian copula, the bivariate t-copula is both radially symmetric
and exchangeable.

(b) Concordance measures: Kendall’s τ and Spearman’s ρS are the same as for the bivariate
Gaussian copula, independent of the degrees of freedom ν.

τ =
2
π

arcsin(ρ), (Kendall’s τ )

ρS =
6
π

arcsin(ρ/2). (Spearman’s ρS)

(c) Tail dependence: Unlike in the case of the Gaussian copula, the lower- and upper-tail
dependence coefficients are not zero. They are given by

UTDν,ρ = LTDν,ρ = 2 · tν+1

(
−

√
(ν + 1) (1− ρ)

1 + ρ

)
.
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Lecture III

Estimation of copulas: parametric and semiparametric
approaches
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Setup

• Let d = 2, i.e. bivariate case

• Let C(u1, u2;θ) be a family of copulas the parameter vector θ

• Let C(u1, u2;θ) be absolutely continuous

• Let a sample from the random vector (X1,X2) be given

→ Focus on estimation of θ
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Specification
• αk (k = 1, 2) denotes the parameter vector of the marginal distribution and θ denotes the

parameter vector of the copula

• Let (X1,X2) denote a continuous bivariate random variable and Fk(x ;αk) and fk(x ;αk) be the cdf
and the pdf of Xk

• Let Uk = Fk(Xk ;αk)

• C(u1, u2;θ) denotes the joint cdf of (U1,U2), c(u1, u2;θ) denotes the pdf corresponding to
C(u1, u2;θ)

• H(x1, x2;η) and h(x1, x2;η) denote the cdf and pdf of (X1,X2), respectively, where
η = (α′1,α

′
2,θ

′)′

→ Estimation of θ using iid observations (x1i , x2i), i = 1, . . . , n
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Estimation methods: Overview
• Maximum Likelihood Estimation (MLE)

• Inference Function for Margins method (IFM)

• Semiparametric method (SP) / Pseudo Maximum Likelihood Estimation (PMLE)
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Maximum likelihood estimation
The joint density function h(x1, x2;η) of (X1,X2) can be expressed as follows:

h(x1, x2;η) = c(F1(x1;α1),F2(x2;α2);θ)f1(x1;α1)f2(x2;α2)

Therefore, the log-likelihood function takes the form:

L(η) =
n∑

i=1

log[c(F1(x1i ;α1),F2(x2i ;α2);θ)f1(x1i ;α1)f2(x2i ;α2)]

• MLE of η: η̂MLE := (α̂′1, α̂
′
2, θ̂

′
)′ = argmax L

η
(η)

• Under some regularity assumptions, we get η̂MLE from solving:

(∂L/∂αT
1 , ∂L/∂αT

2 , ∂L/∂θT )T = 0

•
√

n(η̂MLE − η)
d→ N(0, I(η)−1), for n→∞, where I(η) = I is the Fisher information matrix

• MLE is asymptotically efficient and hence is the preferred first option, when the model is correctly
specified
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Inference for margins
Problems with MLE:
One does not usually have closed form estimators and numerical techniques are needed. For MLE,
the number of parameters increases with the dimension and numerical optimization becomes more
time consuming.

Solution: Two-stage estimation

1. Each marginal distribution is estimated separately: Marginal log-likelihoods
Lk(αk) =

∑n
i=1 log(fk(xik ;αk)), k = 1, 2 are separately maximized to get α̂1

IFM , α̂2
IFM

2. θ is estimated by substituting α̂k
IFM for αk in the log-likelihood function for the joint distribution

and then maximizing the resulting function
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Inference for margins
Thus, the IFM estimate θ̂

IMF
of θ is the maximum of

L̃(θ) =
n∑

i=1

log[c(F1(x1i ; α̂1
IFM),F2(x2i ; α̂2

IFM);θ)]

Under some regularity assumptions, η̂IFM is the solution of

(∂L1/∂α
T
1 , ∂L2/∂α

T
2 , ∂L̃/∂θT )T = 0

This procedure is computationally simpler than estimating all parameters α1,α2,θ simultaneously.
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Inference for margins: Asymptotic normality
From the theory of inference functions,

√
n(η̂IFM − η)

d→ N(0,V ), n→∞

The asymptotic covariance matrix for η̂IFM is

V = (−D−1
g )Mg(−D−1

g )T ,

where Mg = Cov(g(X;η)) = E [ggT ],
Dg = E [∂g(X,η)/∂ηT ],
X = (X1,X2),
gT = (gT

1 , g
T
2 , g

T
3 ),

gk = ∂lk/∂αk , lk = log fk(·;αk) for k = 1, 2,
g3 = ∂l/∂θ, l = log h(·, ·;η).

[Joe, (2005)]
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Inference for margins: Asymptotic relative efficiency

• Comparison of the ML estimator and the IFM estimator for scalar θ in terms of their variances

• The ratio of the variance of the first estimator to the variance of the second estimator is called the
asymptotic efficiency of the second estimator with respect to the first

• Numerical computations showed that the IFM has good efficiency

• IFM estimator θ̂
IMF

has very high efficiency

• However, in cases of extreme dependence near the Frèchet bounds there can be a loss of
efficiency of the univariate parameter estimators α̂1

IFM , α̂2
IFM

The ML and IFM methods are completely parametric because they require the model to be specified
up to a finite number of unknown parameters. A possible shortcoming of these two methods of
estimating θ is that they are likely to be inconsistent even if just one marginal distribution is
misspecified.

Solution: Semiparametric method
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Semiparametric method

• Marginal distributions are allowed to have arbitrary and unknown functional forms

• Two-stage estimation as in IFM

• Difference: The marginal distributions are estimated nonparametrically by their sample empirical
distributions

• More specifically: Let F̂k denote the rescaled empirical cdf of xk1, . . . , xkn, (k = 1, 2), defined as

F̂k(x) =
1

n + 1

n∑
i=1

I(xki ≤ x)

• Rescaling the ecdf with n
n+1 ensures that the first order condition of the log-likelihood function for

the joint distribution is well defined for all finite n
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Semiparametric method: Pseudo log-likelihood
Thus, the SP estimate (PMLE) θ̃

SP
of θ is the maximum of the pseudo log-likelihood

L̂(θ) =
n∑

i=1

log[c(F̂1(x1i), F̂2(x2i);θ]

Proposition 3
Let Rn := 1

n

∑n
i=1 J(F̂1(x1i), F̂2(x2i)) and J(u1, u2) be a continuous function from (0, 1)2 into R such that

µ := E [J(F1(X1),F2(X2))] =
∫

J(u1, u2)dC(u1, u2)

exists. Further, let J admit continuous partial derivatives Ji(u1, u2) = ∂J/∂ui for i = 1, 2. Under
suitable regularity conditions, it follows that
(i) Rn → µ almost surely.
(ii)
√

n(Rn − µ)→N(0, σ2) in distribution, where

σ2 := Var [J(F1(X1),F2(X2)) +
2∑

i=1

∫
1{Xi ≤ xi}Ji(F1(x1),F2(x2))dH(x1, x2)].

Proof: [Genest, (1995)]
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Semiparametric method: Asymptotic normality

Let l(u1, u2,θ) = log c(u1, u2,θ) and use indices 1, 2 and θ to denote partial derivatives of l with
respect to u1, u2 and θ respectively.

Proposition 4
Under suitable regularity conditions, the semiparametric estimator θ̃

SP
is consistent and√

n(θ̃
SP − θ) is asymptotically normal with variance ν2 = σ2/β2, where

σ2 := Var [lθ(F1(X1),F2(X2),θ) + W1(X1) + W2(X2)],

Wi(Xi) :=

∫
1{Fi(Xi) ≤ ui}lθ,i(u1, u2,θ)c(u1, u2,θ)du1du2,

β := −E [lθ,θ(F1(X1),F2(X2),θ)] = E [l2θ(F1(X1),F2(X2),θ)].
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Semiparametric method: Asymptotic variance

Note that
σ2 = β + Var [W1(X1) + W2(X2)].

Therefore, it follows that

ν2 =
σ2

β2 =
1
β

+
Var [W1(X1) + W2(X2)]

β2 ≥ 1
β

• The inequality expresses the fact that θ̃
SP

has a larger asymptotic variance than the MLE θ̂
MLE

of
θ computed under the assumption that the marginals are known

• Equality in the above inequality occurs when the copula approaches the independence copula
(with paramter θΠ2)
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Lecture IV

Vine copulas
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Multivariate copulas

Elliptical copulas

• Many parameters (correlation matrix).

• Only symmetric dependence.

• Student’s t copula: only one degrees of freedom parameter.

Archimedean copulas

• Few parameters (usually one or two).

• Same dependence for all pairs.

Solution: Pair-copula constructions or vine copulas
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Pair-copula construction in 3 dimensions
Factorization

f (x1, x2, x3) = f3|12(x3|x1, x2)f2|1(x2|x1)f1(x1)

Using Sklar’s Theorem for f12(x1, x2), f13|2(x1, x3|x2) and f23(x2, x3) implies

f2|1(x2|x1) = c12(F1(x1),F2(x2))f2(x2)

f3|12(x3|x1, x2) = f13|2(x1, x3|x2)
1

f1|2(x1|x2)

= c13;2(F1|2(x1|x2),F3|2(x3|x2); x2)�������f1|2(x1|x2)
f3|2(x3|x2)

�������f1|2(x1|x2)

= c13;2(F1|2(x1|x2),F3|2(x3|x2); x2) f3|2(x3|x2)︸ ︷︷ ︸
= c13;2(F1|2(x1|x2),F3|2(x3|x2); x2)c23(F2(x2),F3(x3))f3(x3)

3-dimensional pair-copula construction

f (x1, x2, x3) = c13;2(F1|2(x1|x2),F3|2(x3|x2); x2)c23(F2(x2),F3(x3))

× c12(F1(x1),F2(x2))f3(x3)f2(x2)f1(x1)
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Pair-copula construction in d dimensions
Factorization

f (x1, ..., xd) =

[
d∏

k=2

fk |1,..,k−1(xk |x1, ..., xk−1)

]
× f1(x1)

For distinct i, j, i1, ..., ik with i < j and i1 < ... < ik let

ci,j;i1,...,ik := ci,j;i1,...,ik (Fi|i1,...,ik (xi |xi1, ..., xik ), (Fj|i1,...,ik (xj |xi1, ..., xik )).

Then fk |1,..,k−1(xk |x1,..., xk−1) =

[
k−2∏
`=1

c`,k ;`+1,...,k−1

]
× ck−1,k × fk(xk)

With ` = i and k = i + j it follows that:

d-dimensional pair-copula construction

f (x1, ..., xd) =

d−1∏
j=1

d−j∏
i=1

ci,i+j;i+1,...,i+j−1

× [ d∏
k=1

fk(xk)

]
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4-dimensional pair-copula construction

4-dimensional pair-copula construction

f = f1 · f2 · f3 · f4 · c12 · c23 · c34 · c13;2 · c24;3 · c14;23

1 2 3 4
1,2 2,3 3,4

T1

1,2 2,3 3,4
1,3;2 2,4;3

T2

1,3;2 2,4;3
1,4;23

T3
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Some graph theory

Decomposition into pair-copulas is
not unique.

I Graph-theoretical model
to organize pair-copula constructions.

• Graph G = (N,E) with
− nodes N and
− (undirected) edges E ⊂ N × N.

• Degree of a node: number of nodes connected to this node.

• Path: sequence of connected nodes.

• Cycle: path with end node = start node.

• Connected graph: path from each node to each other node.

• Tree: connected, acyclic graph.
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Regular vines
Bedford and Cooke (2002) introduced the graphical model called regular vine to organize pair-copula
constructions.

Regular vine (R-vine)
A d-dimensional regular vine is a linked sequence of d − 1 trees T1, ...,Td−1 with edge sets
E1, ...,Ed−1.

1. Tree j has d + 1− j nodes and d − j edges.
2. Edges in tree j become nodes in tree j + 1.
3. Proximity condition: Two nodes in tree j + 1 are joined by an edge only if the corresponding edges

in tree j share a node.

Example (d = 3):
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Regular vine distributions and copulas

Regular vine distribution
A d-dimensional regular vine distribution has the following components:
• A regular vine tree structure.
• Each edge corresponds to a pair-copula density.
• The density of a regular vine distribution is defined by

I the product of pair-copula densities over the d(d − 1)/2 edges identified by the regular vine
trees and

I the product of the marginal densities.

A regular vine copula is defined as the product of pair-copulas determined through a regular vine.

Example (d = 3):

f (x1, x2, x3) = c13;2(F1|2(x1|x2),F3|2(x3|x2); x2)c23(F2(x2),F3(x3))

× c12(F1(x1),F2(x2))f3(x3)f2(x2)f1(x1)
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Example of a five-dimensional R-vine
2

5 1 4

3 T1

Density

f = f1 · f2 · f3 · f4 · f5
· c14 · c15 · c24 · c34

· c12;4 · c13;4 · c45;1

· c23;14 · c35;14

· c25;134
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1,2;4

1,3;4 T2

4,5;1 1,3;4 1,2;4
3,5;14 2,3;14

T3

3,5;14 2,3;14
2,5;134

T4

Density
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D-vine

An R-vine is called a D-vine if each node in T1 has a degree of at most 2 (T1 is a path).

Example (d = 4):

Density of D-vine distribution

f = f1 · f2 · f3 · f4 · c12 · c23 · c34 · c13;2 · c24;3 · c14;23
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D-vine

An R-vine is called a D-vine if each node in T1 has a degree of at most 2 (T1 is a path).

Example (d = 4):

1 2 3 4
1,2 2,3 3,4

T1

1,2 2,3 3,4
1,3;2 2,4;3

T2

1,3;2 2,4;3
1,4;23

T3

Density of D-vine distribution

f = f1 · f2 · f3 · f4 · c12 · c23 · c34 · c13;2 · c24;3 · c14;23
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C-vine

An R-vine is called a canonical vine
(C-vine) if each tree Tj , j = 1, ..., d − 1,
has a unique node of degree d − j , the
root node.

Density of C-vine distribution

f = f1 · f2 · f3 · f4
· c12 · c13 · c14

· c23;1 · c24;1

· c34;12

Example (d = 4):
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(C-vine) if each tree Tj , j = 1, ..., d − 1,
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Density of C-vine distribution

f = f1 · f2 · f3 · f4
· c12 · c13 · c14

· c23;1 · c24;1

· c34;12

Example (d = 4):

2

1 3

4

1,2

1,3

1,4 T1

1,2 1,3

1,4

2,3;1

2,4;1 T2

2,3;1 2,4;1
3,4;12

T3
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Density of an R-vine distribution

For e ∈ Ei , i ∈ {1, ..., d − 1}, let e = j(e), k(e)|D(e).

• j(e), k(e) = conditioned nodes

• D(e) = conditioning set

This notation is unique for R-vines (see Bedford and Cooke (2002)).

Density of an R-vine distribution
The joint density of an R-vine distribution for X is uniquely determined and given by

f (x) =

[
d∏

k=1

fk (xk )

]
×

[
d−1∏
i=1

∏
e∈Ei

cj(e),k(e);D(e)(Fj|D(xj(e)|xD(e)),Fk |D(xk(e)|xD(e)))

]
.

xD(e) is the subvector of x = (x1, ..., xd)′ determined by the indices D(e).
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Pair copulas associated with bivariate conditional
distributions
Important notation
Let D be an index set not containing i and j .

• Remember:
Cij(ui , uj) is the copula corresponding to Xi , Xj .

• Distinguish:
Cij;D(ui , uj ; uD), the copula corresponding to Xi , Xj given X D = xD,uD = FD(xD),
and
Cij|D(ui , uj |uD), the bivariate density of Ui , Uj given UD = uD.
The latter is in general no copula.
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Conditional distribution functions I
Let D = {j} ∪ D−j be an index set with i /∈ D and define xD = (xj , xD−j ). Then,

fi|D(xi |xD) = cij;D−j (Fi|D−j (xi |xD−j ),Fj|D−j (xj |xD−j ); xD−j ) · fi|D−j (xi |xD−j ).

Univariate case

Fi|j(xi |xj) =

∫ xi

−∞
fi|j(t |xj)dt =

∫ xi

−∞
cij(Fi(t),Fj(xj))fi(t)dt

=

∫ xi

−∞

∂2Cij(Fi(t),Fj(xj))

∂Fi(t) ∂Fj(xj)
fi(t)dt =

∂ Cij(Fi(xi),Fj(xj))

∂Fj(xj)
.

• Example:

F3|2(x3|x2) =
∂ C23(F2(x2),F3(x3))

∂F2(x2)

• h-function: Set hij;D−j (ui |uj ; uD−j ) :=
∂ Cij;D−j (ui ,uj ;uD−j )

∂uj
.

Then Fi|j(xi |xj) = hij(Fi(xi)|Fj(xj)).
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Conditional distribution functions II

General case
Under regularity conditions Joe (1996) showed that

Fi|D(xi |xD) =
∂ Cij;D−j (Fi|D−j (xi |xD−j ),Fj|D−j (xj |xD−j ); xD−j )

∂Fj|D−j (xj |xD−j )
.

• Fi|D(xi |xD) = hij|D−j (Fi|D−j (xi |xD−j ),Fj|D−j (xj |xD−j ); xD−j )

→ recursive computation!

• Example:

F3|12(x3|x1, x2) =
∂ C13;2(F1|2(x1|x2),F3|2(x3|x2); x2)

∂F1|2(x1|x2)

= h13;2(F1|2(x1|x2)|F3|2(x3|x2); x2)

= h13;2
(
h12(F1(x1)|F2(x2))

∣∣h23(F3(x3)|F2(x2)); x2
)

VineCopula: BiCopHfunc
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Simplifying assumption
• To facilitate inference of vine copulas, pair-copulas are chosen to be independent of conditioning

values. Arguments however depend on the conditioning values.

cj,k ;D(Fj|D(xj |xD),Fk |D(xk |xD); xD) ≡ cj,k ;D(Fj|D(xj |xD),Fk |D(xk |xD))

• Hobæk Haff et al. (2010) and Stöber et al. (2013) give examples where the pair-copula
parameters depend on the specific conditioning values. Recent and ongoing investigation in Acar
et al. (2012) and Killiches et al. (2016).

• Hobæk Haff et al. (2010) show that this restriction is not severe in examples.
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Simplifying assumption
Copulas for which the simplifying assumption is fulfilled:

• multivariate Gaussian copula

• multivariate Student’s t copula (only one arising from scale mixtures of normals, see Stöber et al.
(2013))

• partial correlations ρij;D are copula parameters in a Gaussian or Student’s t-vine with common
degree of freedom; degree-of-freedom increase by 1 as tree number increase by 1

• multivariate Clayton copula (the only Archimedean; Takahashi (1965), Stöber et al. (2013))
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Some more remarks
• Number of different R-vines is huge (Morales-Nápoles 2011).

• Flexibility is added by allowing for different pair-copula families.

Tractable estimation and model selection methods are vital.
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R-vine structure matrices
Efficient encoding of R-vine models needed for statistical inference.

I Matrix notation by Morales-Nápoles et al. (2010) and Dißmann et al. (2013).


2
5 3
3 5 4
1 1 5 5
4 4 1 1 1



1. {2, 4}, {3, 4}, {4, 1}, {5, 1}
2. {2, 1; 4}, {3, 1; 4}, {4, 5; 1}
3. {2, 3; 14}, {3, 5; 14}
4. {2, 5; 314}

2

5 1 4

3

1,5 1,4

2,4

3,4 T1

2,4

1,5 1,4

3,4

4,5;1

1,2;4

1,3;4 T2

4,5;1 1,3;4 1,2;4
3,5;14 2,3;14

T3

3,5;14 2,3;14
2,5;134

T4
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R-vine copula and parameter matrices
Copula families and parameters can be stored in associated matrices.


2
5 3
3 5 4
1 1 5 5
4 4 1 1 1

 −→


C25;314

C23;14 C35;14

C21;4 C31;4 C45;1

C24 C34 C41 C51



θ =


θ25;314

θ23;14 θ35;14

θ21;4 θ31;4 θ45;1

θ24 θ34 θ41 θ51


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R-vine matrix objects
An RVineMatrix object contains all required matrices:

> Matrix = matrix(c(2,0,0,0,0,

+ 5,3,0,0,0,

+ 4,5,4,0,0,

+ 1,1,5,5,0,

+ 4,4,1,1,1),5,5)

> family = matrix(c(0,0,0,0,0,

+ 1,0,0,0,0,

+ 3,3,0,0,0,

+ 4,4,4,0,0,

+ 4,1,1,3,0),5,5)

> par = matrix(c(0 ,0 ,0 ,0 ,0,

+ 0.2,0 ,0 ,0 ,0,

+ 0.9,1.1,0 ,0 ,0,

+ 1.5,1.6,1.9,0 ,0,

+ 3.9,0.9,0.5,4.ol8,0),5,5)

> RVM = RVineMatrix(Matrix=Matrix, family=family, par=par,

+ par2=matrix(0,5,5), names=c("V1","V2","V3","V4","V5"))
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Summary
Vine copulas (V ,B,θ) have three components:

• structure V ,

• pair-copulas B = B(V) and

• parameters θ = θ(B(V)).

Relations between model components have to be respected in inference!
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Lecture V

Estimation and model selection for vine copulas
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Conditional inverse method
Aim: Sample from multivariate distribution F .

1. Obtain d i.i.d. uniform samples (v1, ...., vd).

2. Set
x1 := F−1

1 (v1)

x2 := F−1
2|1 (v2|x1)

x3 := F−1
3|12(v3|x1, x2)

...

xd := F−1
d |1,...,d−1(vd |x1, ..., xd−1).

3. Then x := (x1, ...., xd)′ is a sample from F (see, e.g., Devroye (1986)).

Note: Let C be the copula associated to F , then it is sufficient to obtain a sample u := (u1, ...., ud)′

from C and set xj := F−1
j (uj), j = 1, ..., d .
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Simulating vine copulas
Question: How do inverse conditional distribution functions look like for vine copulas?

Example (d = 3):

1. Obtain 3 i.i.d. uniform samples (v1, v2, v3).

2. Set
u1 := v1

u2 := F−1
2|1 (v2|u1) = h−1

12 (v2|u1)

u3 := F−1
3|12(v3|u1, u2) = h−1

23

(
h−1

13;2

(
v3|h12(u1|u2); u2

)
|u2
)
.

Recall: F3|12(u3|u1, u2) = h13;2
(
h23(u3|u2)

∣∣h12(u1|u2); u2
)

3. Then u := (u1, u2, u3)′ is a sample from the vine copula.

General sampling algorithm in Dißmann et al. (2013).
VineCopula: RVineSim

PD Dr. Aleksey Min (TUM) 152



Simulating vine copulas
Question: How do inverse conditional distribution functions look like for vine copulas?

Example (d = 3):

1. Obtain 3 i.i.d. uniform samples (v1, v2, v3).

2. Set
u1 := v1

u2 := F−1
2|1 (v2|u1) = h−1

12 (v2|u1)

u3 := F−1
3|12(v3|u1, u2) = h−1

23

(
h−1

13;2

(
v3|h12(u1|u2); u2

)
|u2
)
.

Recall: F3|12(u3|u1, u2) = h13;2
(
h23(u3|u2)

∣∣h12(u1|u2); u2
)

3. Then u := (u1, u2, u3)′ is a sample from the vine copula.

General sampling algorithm in Dißmann et al. (2013).
VineCopula: RVineSim

PD Dr. Aleksey Min (TUM) 152



Simulating vine copulas
Question: How do inverse conditional distribution functions look like for vine copulas?

Example (d = 3):

1. Obtain 3 i.i.d. uniform samples (v1, v2, v3).

2. Set
u1 := v1

u2 := F−1
2|1 (v2|u1) = h−1

12 (v2|u1)

u3 := F−1
3|12(v3|u1, u2)

= h−1
23

(
h−1

13;2

(
v3|h12(u1|u2); u2

)
|u2
)
.

Recall: F3|12(u3|u1, u2) = h13;2
(
h23(u3|u2)

∣∣h12(u1|u2); u2
)

3. Then u := (u1, u2, u3)′ is a sample from the vine copula.

General sampling algorithm in Dißmann et al. (2013).
VineCopula: RVineSim

PD Dr. Aleksey Min (TUM) 152



Simulating vine copulas
Question: How do inverse conditional distribution functions look like for vine copulas?

Example (d = 3):

1. Obtain 3 i.i.d. uniform samples (v1, v2, v3).

2. Set
u1 := v1

u2 := F−1
2|1 (v2|u1) = h−1

12 (v2|u1)

u3 := F−1
3|12(v3|u1, u2)

= h−1
23

(
h−1

13;2

(
v3|h12(u1|u2); u2

)
|u2
)
.

Recall: F3|12(u3|u1, u2) = h13;2
(
h23(u3|u2)

∣∣h12(u1|u2); u2
)

3. Then u := (u1, u2, u3)′ is a sample from the vine copula.

General sampling algorithm in Dißmann et al. (2013).
VineCopula: RVineSim

PD Dr. Aleksey Min (TUM) 152



Simulating vine copulas
Question: How do inverse conditional distribution functions look like for vine copulas?

Example (d = 3):

1. Obtain 3 i.i.d. uniform samples (v1, v2, v3).

2. Set
u1 := v1

u2 := F−1
2|1 (v2|u1) = h−1

12 (v2|u1)

u3 := F−1
3|12(v3|u1, u2) = h−1

23

(
h−1

13;2

(
v3|h12(u1|u2); u2

)
|u2
)
.

Recall: F3|12(u3|u1, u2) = h13;2
(
h23(u3|u2)

∣∣h12(u1|u2); u2
)

3. Then u := (u1, u2, u3)′ is a sample from the vine copula.

General sampling algorithm in Dißmann et al. (2013).
VineCopula: RVineSim

PD Dr. Aleksey Min (TUM) 152



Simulating vine copulas
Question: How do inverse conditional distribution functions look like for vine copulas?

Example (d = 3):

1. Obtain 3 i.i.d. uniform samples (v1, v2, v3).

2. Set
u1 := v1

u2 := F−1
2|1 (v2|u1) = h−1

12 (v2|u1)

u3 := F−1
3|12(v3|u1, u2) = h−1

23

(
h−1

13;2

(
v3|h12(u1|u2); u2

)
|u2
)
.

Recall: F3|12(u3|u1, u2) = h13;2
(
h23(u3|u2)

∣∣h12(u1|u2); u2
)

3. Then u := (u1, u2, u3)′ is a sample from the vine copula.

General sampling algorithm in Dißmann et al. (2013).
VineCopula: RVineSim

PD Dr. Aleksey Min (TUM) 152



Illustration of 3-dimensional D-vine
Pairs {1,2} and {2,3} are modeled unconditionally in tree 1. Contours of bivariate {1,3} margin with
standard normal margins after integration:

Gumbel(1.2), Clayton(−7), Clayton(−7)
 tau=(0.17,−0.78,−0.78)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

t(0.8,2.1), Gumbel(1.75), t(−0.95,2.5)
 tau=(0.59,0.43,−0.80)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Frank(−34), Clayton(20), Frank(34)
 tau=(0.89,0.91,0.89)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Joe(−4), Joe(24), Joe(7)
 tau=(−0.61,0.92,0.76)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3
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Simulation
Remember, we defined an RVM-Object with an R-vine-structure, pair-copula families and their
parameters and stored it in RVM.

> simdat = RVineSim(500, RVM)

> head(simdat)

V1 V2 V3 V4 V5

[1,] 0.51 0.24 0.42 0.33 0.45

[2,] 0.23 0.14 0.16 0.12 0.20

[3,] 0.65 0.38 0.46 0.29 0.70

[4,] 0.43 0.18 0.08 0.08 0.26

[5,] 0.86 0.86 0.85 0.86 0.87

[6,] 0.71 0.71 0.80 0.68 0.88
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General remarks on copula estimation
Marginal distributions Fγj and copula Cθ have to be estimated.

• Joint maximum likelihood (ML) estimation(
θ̂ML

γ̂ML

)
= argmax

θ,γ

n∑
i=1

(
log [cθ(Fγ1(xi1), ...,Fγd (xid))] +

d∑
j=1

log fγj (xij)
)

• Inference functions for margins (IFM) (Joe and Xu 1996)

θ̂IFM = argmax
θ

n∑
i=1

log [cθ(Fγ̂1 (xi1), ...,Fγ̂d (xid))]

• Maximum pseudo likelihood (MPL) estimation (Genest et al. 1995)

θ̂MPL = argmax
θ

n∑
i=1

log [cθ (ui1, ..., uid)] ,

where uij = rij/(n + 1) are transformed ranks.

We assume data is already marginally uniform (→ IFM, MPL).
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Sequential estimation
Parameters are sequentially estimated starting from the top tree.

Example (d = 3):

• Parameters: θ = (θ12, θ23, θ13|2)′

• Observations: {(xi1, xi2, xi3), i = 1, ..., n}

1. Tree 1:
− Estimate θ12 from {(xi1, xi2), i = 1, ..., n}.
− Estimate θ23 from {(xi2, xi3), i = 1, ..., n}.

2. Tree 2:
− Define pseudo observations

v̂i,1|2 := F1|2(xi1|xi2; θ̂12) and v̂i,3|2 := F3|2(xi3|xi2; θ̂23).

− Estimate θ13;2 from {(v̂i,1|2, v̂i,3|2), i = 1, ..., n}.

Asymptotic theory is available (Hobæk Haff 2013), however analytical standard errors are difficult to
compute.
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Maximum likelihood estimation
Example (d = 3):

θ̂ = argmax
θ

n∑
i=1

(
log c12(F1(xi1),F2(xi2); θ12) + log c23(F2(xi2),F3(xi3); θ23)

+ log c13;2(F1|2(xi1|xi2; θ12),F3|2(xi3|xi2; θ23); θ13;2)
)

• Asymptotically efficient under regularity conditions.

• Estimates of standard errors can be based on inverse Hessian matrix (Stöber and Schepsmeier
2013).

• Sequential estimates can be used as starting values.

• Numerical problems for large dimensions, i.e. negative variance estimates might occur.
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Likelihood computation for R-vine copulas
Sequential and maximum likelihood estimation look simple
but identification of required conditional distribution functions not trivial.

Example (d = 5): Evaluate c2,5;134.

c = c14 · c15 · c24 · c34 · c12;4 · c13;4 · c45;1 · c23;14 · c35;14 · c25;134

I Dißmann et al. (2013) give algorithm to evaluate an R-vine density.
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Example
• Daily log returns of 5 major German stocks.
− Deutsche Bank (DBK.DE)

− Commerzbank (CBK.DE)

− Allianz (ALV.DE)

− Munich Re (MUV2.DE)

− Deutsche Börse (DB1.DE)

• Observed from January 2005 to August 2009 (1158 observations).

• Time series are filtered using GARCH(1,1) with Student’s t innovations.

• Data set of standardized residuals transformed to [0,1].
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A first look at the data

ALV.DE
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Parameter estimation I
• Sequential estimation (based on BiCopEst)
− either using bivariate inversion of Kendall’s τ :

> RVineSeqEst(data, RVM, method="itau")

− or bivariate maximum likelihood estimation:
> RVineSeqEst(data, RVM, method="mle")

I Very fast, since only bivariate estimation.

I Provides good starting values for joint maximum likelihood estimation.
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Parameter estimation II
• Maximum likelihood estimation of all parameters jointly (log-likelihood computation: RVineLogLik).
> RVineMLE(data, RVM, start, start2, maxit,

+ grad, hessian, se)

I Starting values can be calculated using sequential estimation.

I Analytical gradient can be used for numerical optimization
(see RVineGrad).

I Standard errors can be computed based on the analytical Hessian
(see RVineStdError and RVineHessian).

I In RVineMLE(...,hessian=TRUE) a numerical Hessian is returned.
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Parameter estimation III
> mle = RVineMLE(data=dax, RVM, start=0, start2=0,

+ grad=TRUE, hessian=TRUE, se=TRUE)

> mle$RVM$par

[,1] [,2] [,3] [,4] [,5]

[1,] 0.00 0.00 0.00 0.00 0

[2,] 0.01 0.00 0.00 0.00 0

[3,] 0.19 0.08 0.00 0.00 0

[4,] 1.13 1.10 1.12 0.00 0

[5,] 1.89 0.50 0.71 1.47 0

> mle$se

[,1] [,2] [,3] [,4] [,5]

[1,] 0.00 0.00 0.00 0.00 0

[2,] 0.03 0.00 0.00 0.00 0

[3,] 0.05 0.03 0.00 0.00 0

[4,] 0.02 0.02 0.03 0.00 0

[5,] 0.05 0.02 0.01 0.07 0

• Standard errors for Kendall’s τ can be
estimated using the delta method.

• RVineMLE returns std. errors based on the
numerical Hessian matrix

• An analytical Hessian matrix can be
calculated by RVineHessian
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Pair-copula selection
Problematic because of small Kullback-Leibler probability distances and boundary cases (Student’s t,
two parameter Archimedean: Clayton-Gumbel (BB1), Joe-Clayton (BB7),...).

Many different approaches available:

• Graphical tools: scatter plots, empirical contour plots,...

• Copula goodness-of-fit tests: Choose family with highest p-value (if larger than α).

• Choose family with highest likelihood or smallest AIC/BIC/....

• Choose family which best reproduces data characteristics (Kendall’s τ , joint tail behavior).

• ...
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Pair-copula selection

Independence test (Genest and Favre 2007)
The test exploits the approximate standard normality of the test statistic

statistic := T =

√
9N(N − 1)

2(2N + 5)
× |τ̂ |,

where N, the number of observations, is large and τ̂ is the empirical Kendall’s tau of the data vectors
u1 and u2. The p-value of the null hypothesis of bivariate independence hence is asymptotically

p.value = 2× (1− Φ (T )) ,

where Φ is the standard normal distribution function.
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Pair copula selection
> cops = RVineCopSelect(data=dax, familyset=NA,

+ Matrix=Matrix, selectioncrit="AIC",

+ indeptest=FALSE, level=0.05)

RVineCopSelect uses the sequential estimation approach to estimate the necessary copula
parameters.

> cops$family

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 0 0

[2,] 4 0 0 0 0

[3,] 5 14 0 0 0

[4,] 2 2 2 0 0

[5,] 2 20 2 2 0
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Treewise construction of R-vines (Tree 1)

Dißmann et al. (2013): Capture strong dependencies of data xij , j = 1, ..., d , i = 1, ..., n..

1. Calculate an empirical dependence measure δ̂jk for all possible variable pairs {jk} (→ edge
weights).

2. Select the tree on all nodes that maximizes the sum of absolute empirical dependencies (→
maximum spanning tree):

max
∑

edges e={j,k} in
spanning tree

|δ̂jk |.

Parsimonious model selection: choose independence copula if possible.

3. For each edge {j, k} in the selected spanning tree, select a copula and estimate the
corresponding parameter(s).

4. Then transform to pseudo observations Fj|k(xij |xik ; θ̂jk) and Fk |j(xik |xij ; θ̂jk), i = 1, ..., n.
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Treewise construction of R-vines (Trees 2, ..., d − 1)

For ` = 2, ..., d − 1:

1. Calculate the empirical dependence measure δ̂jk |D for all conditional variable pairs {j, k |D} that
can be part of tree T`, i.e., all edges fulfilling the proximity condition.

2. Among these edges, select the spanning tree that maximizes the sum of absolute empirical
dependencies, i.e.,

max
∑

edges e={j,k |D} in
spanning tree

|δ̂j,k |D|.

3. For each edge {j, k |D} in the selected spanning tree, select a conditional copula and estimate the
corresponding parameter(s).

4. Then transform to pseudo observations Fj|k∪D(xij |x i,k∪D; θ̂j,k |D) and Fk |j∪D(xik |x i,j∪D; θ̂j,k |D),
i = 1, ..., n.

PD Dr. Aleksey Min (TUM) 168



Treewise construction of R-vines (Trees 2, ..., d − 1)

For ` = 2, ..., d − 1:

1. Calculate the empirical dependence measure δ̂jk |D for all conditional variable pairs {j, k |D} that
can be part of tree T`, i.e., all edges fulfilling the proximity condition.

2. Among these edges, select the spanning tree that maximizes the sum of absolute empirical
dependencies, i.e.,

max
∑

edges e={j,k |D} in
spanning tree

|δ̂j,k |D|.

3. For each edge {j, k |D} in the selected spanning tree, select a conditional copula and estimate the
corresponding parameter(s).

4. Then transform to pseudo observations Fj|k∪D(xij |x i,k∪D; θ̂j,k |D) and Fk |j∪D(xik |x i,j∪D; θ̂j,k |D),
i = 1, ..., n.

PD Dr. Aleksey Min (TUM) 168



Treewise construction of R-vines (Trees 2, ..., d − 1)

For ` = 2, ..., d − 1:

1. Calculate the empirical dependence measure δ̂jk |D for all conditional variable pairs {j, k |D} that
can be part of tree T`, i.e., all edges fulfilling the proximity condition.

2. Among these edges, select the spanning tree that maximizes the sum of absolute empirical
dependencies, i.e.,

max
∑

edges e={j,k |D} in
spanning tree

|δ̂j,k |D|.

3. For each edge {j, k |D} in the selected spanning tree, select a conditional copula and estimate the
corresponding parameter(s).

4. Then transform to pseudo observations Fj|k∪D(xij |x i,k∪D; θ̂j,k |D) and Fk |j∪D(xik |x i,j∪D; θ̂j,k |D),
i = 1, ..., n.

PD Dr. Aleksey Min (TUM) 168



Treewise construction of R-vines (Trees 2, ..., d − 1)

For ` = 2, ..., d − 1:

1. Calculate the empirical dependence measure δ̂jk |D for all conditional variable pairs {j, k |D} that
can be part of tree T`, i.e., all edges fulfilling the proximity condition.

2. Among these edges, select the spanning tree that maximizes the sum of absolute empirical
dependencies, i.e.,

max
∑

edges e={j,k |D} in
spanning tree

|δ̂j,k |D|.

3. For each edge {j, k |D} in the selected spanning tree, select a conditional copula and estimate the
corresponding parameter(s).

4. Then transform to pseudo observations Fj|k∪D(xij |x i,k∪D; θ̂j,k |D) and Fk |j∪D(xik |x i,j∪D; θ̂j,k |D),
i = 1, ..., n.

PD Dr. Aleksey Min (TUM) 168



Maximum dependence tree
(1) Pairwise dependencies. (2) Maximum dependence tree.

ALV.DE

CBK.DE

DB1.DE

DBK.DE

MUV2.DE

ALV.DE

CBK.DE

DB1.DE

DBK.DE

MUV2.DE
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Vine tree selection
> RVineStructureSelect(data, familyset, type,

+ selectioncrit, indeptest,

+ level, trunclevel)

I R- and C-vine copulas can be selected.

I The vine copula can be truncated to reduce the model complexity.

I Illustrating R-vine copula models

> RVineTreePlot(data=NULL, RVM=rvm, tree=1,

+ edge.labels=c("family","theotau"))
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Vine tree selection
> RVineStructureSelect(data, familyset, type,

+ selectioncrit, indeptest,

+ level, trunclevel=2)

I R- and C-vine copulas can be selected.

I The vine copula can be truncated to reduce the model complexity.

I Illustrating R-vine copula models

> RVineTreePlot(data=NULL, RVM=rvm, tree=1,

+ edge.labels=c("family","theotau"))
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Data example [VineCopula: RVineTreePlot]

T1 : T2 :
Tree 1

ALV.DE

MUV2.DE

DBK.DE

DB1.DE

CBK.DE

Tree 2

ALV.DE,DBK.DE
ALV.DE,MUV2.DE

DB1.DE,DBK.DE

CBK.DE,DBK.DE

T3 : T4:

Tree 3

ALV.DE,DB1.DE|DBK.DE

DBK.DE,MUV2.DE|ALV.DE

ALV.DE,CBK.DE|DBK.DE

Tree 4

CBK.DE,DB1.DE|ALV.DE,DBK.DE

DB1.DE,MUV2.DE|ALV.DE,DBK.DE
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Remarks
• For D-vines the path on all nodes with maximum sum of pairwise dependencies, a maximal

Hamiltonian path, has be to found, i.e. a traveling salesman problem has to be solved.

• For C-vines nodes with maximum sum of pairwise dependencies to all other nodes are selected
as root nodes (Czado et al. 2012).

• Kurowicka (2011) builds trees starting from the last tree to the top tree (bottom-up approach) by
using empirical partial correlations as approximate measure of pairwise dependence.

• A first comparison of sequential R-vine selection methods are in Czado, Jeske, and Hofmann
(2012)

PD Dr. Aleksey Min (TUM) 172



Comparing vine copulas
Given competing vine copulas C = {C1, ...,Cm} for data {x i = (xi1, . . . , xid), i = 1, ..., n}. Which is the
“best” model?

In other words: Which model C∗ is statistically superior to the others?

Comparison using information criteria

C∗AIC = argmin
j≤m

AIC(Cj) or C∗BIC = argmin
j≤m

BIC(Cj),

where
AIC(C) := −2

∑n
i=1 log(c(F1(xi1), . . . ,Fd(xid); θ)) + 2kθ, and

BIC(C) := −2
∑n

i=1 log(c(F1(xi1), . . . ,Fd(xid); θ)) + log(n)kθ,
where kθ is the number of model parameters.
• No statement whether significantly superior to the other models!
• Problematic, when models are non-nested!
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Non-nested model comparison: Vuong test

Vuong (1989) test
Compare two competing non-nested models f1 and f2 by their pointwise likelihoods: for i.i.d.
X i , i = 1, ..., n, define Mi := log

[
f1(X i |θ̂1)

f2(X i |θ̂2)

]
.

H0 : E(Mi) = 0 ∀i = 1, .., n

For observed Mi = mi , reject H0 and prefer model 1 to model 2 at level α if

v :=
1
n

∑n
i=1 mi√∑n

i=1 (mi −m)2
> Φ−1

(
1− α

2

)
.

Choose model 2 if v < −Φ−1
(
1− α

2

)
. No decision if |v | ≤ Φ−1

(
1− α

2

)
.
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Vuong test with Akaike/Schwarz correction
The Vuong test does not take into account the possibly different number of parameters of both models.
Hence the test is called unadjusted and Vuong (1989) gives the definition of an adjusted statistic.

Adjusted test statistics
Let k1 and k2 denote the number of parameters of Models 1 and 2, respectively. Then, the Akaike and
Schwarz correction for the Vuong test statistic are given by

vAkaike :=
1
n

(∑n
i=1 mi − (k1 − k2)

)√∑n
i=1 (mi −m)2

,

and

vSchwarz :=
1
n

(∑n
i=1 mi − 1

2 log(n)(k1 − k2)
)√∑n

i=1 (mi −m)2
.
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Data example [VineCopula: RVineAIC/BIC, RVineVuongTest]

log lik. #par. AIC BIC
Student’s t copula 1561.49 11 -3100.98 -3045.38
Student’s t R-vine (seq. est.) 1589.91 20 -3139.81 -3038.72
Student’s t R-vine (MLE) 1590.49 20 -3140.98 -3039.89

Student’s t R-vine has too many parameters!→ Try Gaussian R-vine.

• Vuong test: Student’s t R-vine vs. Gaussian R-vine:

v = 5.61 vAkaike = 5.16 vSchwarz = 4.00

p-value < 0.01 p-valueAkaike < 0.01 p-valueSchwarz < 0.01

⇒ Student’s t R-vine > Gaussian R-vine

Need for R-vine distributions with mixed pair-copulas!
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Student’s t R-vine (seq. est.) 1589.91 20 -3139.81 -3038.72
Student’s t R-vine (MLE) 1590.49 20 -3140.98 -3039.89

Student’s t R-vine has too many parameters!→ Try Gaussian R-vine.

• Vuong test: Student’s t R-vine vs. Gaussian R-vine:

v = 5.61 vAkaike = 5.16 vSchwarz = 4.00

p-value < 0.01 p-valueAkaike < 0.01 p-valueSchwarz < 0.01

⇒ Student’s t R-vine > Gaussian R-vine

Need for R-vine distributions with mixed pair-copulas!
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Current research
• D-vine based quantile regression (Kraus and Czado 2016)

• Examination of the simplifying assumption (Killiches, Kraus, and Czado 2016)

• Geo-spatial dependent R-vines (Erhardt, Czado, and Schepsmeier 2015)

• nonparametric vines (Nagler and Czado 2015)

• sparse vines (Müller and Czado 2016)

and many more...
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Final remarks
• Vines provide a computationally tractable and highly flexible class of distributions.

• Useful for many applications in risk management such as stress testing or Value-at-Risk
estimation.

• Careful marginal modeling necessary.

R-package on CRAN:

• VineCopula: Statistical inference of R-vine copulas
http://cran.r-project.org/web/packages/VineCopula/

Vine resource page: http://www.vine-copula.org

I like to thank Claudia Czado, Daniel Kraus, Matthias Scherer as well as all my other collaborators and
colleagues!
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