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o I want to present a connection
(homological algebra) <— (combinatorial group theory)

e Groups here can be replaced by any algebraic object. Historically
associative algebras were the first.

e Hopf’s formula: if G = F/R, where F is a free group,

Rn[FF] R
Hy(G) = = | .
S TN R T
° R[ﬁ ]gFI;?] is the largest part of % which is independent of the

choice of F and R.

o The aim is to explain the formula with lim and show how to
generalise it.
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Limits.

o Limit lim F of a functor F : C — D is an object of D together with
a universal collection of morphisms {¢. : lim F = F(c¢)}c such
that F(f)pe = @ for every morphism f:c — ¢

@ Universality means that for every object d € D and every collection
of morphisms {9 : d > F(c) }cec such that F(f)1. =1 for every
morphism f: ¢ — ¢ there exists a unique morphism « : d - lim F
such that 1. = p.a.

o If a limit exists, it is unique up to a unique isomorphism.
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Limits over strongly connected categories

e Let k£ be a commutative ring and C be a category.

e C is strongly connected if C(c,c') # @ for any ¢, €C.

Proposition

Let C be a strongly connected category and F : C - Mod(k) be a
functor. Then lim F exists, for any ¢ € C the morphism

e i lim F = F(c)

is a monomorphism and lim F is the largest constant subfunctor of F.

v

e Roughly speaking, in this case lim F consists of elements of F(c)
that are independent of c.
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Higher limits

e Let k be a commutative ring and C be a category.

e All limits of all functors C - Mod(k) exist.
(If we consider big enough universe)

e We get the functor
lim : Funct(C, Mod(k)) - Mod(k),

F = lim F.

o lim: Funct(C,Mod(k)) — Mod(k) is a left exact functor between
abelian categories.

e Higher limits of F :C - Mod(k) are defined as follows:

lim’ F := R'lim F.
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The category of presentations of a group

e Let G be a group.

e A presentation of G is an epimorphism from a free group
m:F - G.

o If R=Ker(n), then G = F/R.

e A morphism of presentations f: (7: F - G) - (7: F - G) is a
homomorphism f : F — F such that 7 f = .

e Pres(() is the category of presentations of G.

@ Pres(() is strongly connected.

e If A is an associative algebra over a field k, the category
Pres(A) is defined similarly.

e Further all limits are taken over the category of presentations.
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The origin of the approach: Quillen’s theorem about

cyclic homology

o Let A be an algebra over a field k. If F' - A is a presentation of
A, we set r:= Ker(F - A).
e For an F-bimodule M we set
M
My = ———==HHy(F,M),
(M, F]

where [ M, F'] is the vector space generated by elements mf — fm.

Theorem (Quillen (1989))

Let A be an algebra over a field k of characteristic 0. Then even cyclic
homology are isomorphic to the limits

HCy,(A) = lim (F[r"1),.

e How to present odd cyclic homology on this language?
o Our answer: use higher limits.
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Odd cyclic homology as lim*

Theorem (Quillen (1989))

Let A be an algebra over a field k of characteristic 0. Then there are
isomorphisms

HCon(A) 2lim® (F/r™),.

Theorem (R. Mikhailov, — (2013))

Let A be an augmented algebra over a field k of characteristic 0.
Then there are isomorphisms

HCQn_l(A) = Iiml (F/I‘n+1)h.

e lim! allows to present odd cyclic homology but only for augmented
algebras.
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Hochschild homology

Theorem (Quillen (1989))

Let A be an algebra over a field k of characteristic 0. Then there are
isomorphisms

HCop(A) 2lim® (F/r™),.

Theorem (R. Mikhailov, — (2013))

Let A be an algebra over a field k (of any characteristic), M be a
A-bimodule, n >1, 0<i<n—1. Then there are natural isomorphisms

H Hopi(A) = lim' (" [r"*1),
HHo, i(A, M) ~lim® (r"/r™1) @ 4 M

e Higher limits allow to present odd Hochschild homology.
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Connes-Tzygan exact sequence

Consider the short exact sequence

0— r"/r""! — F/r" — F/r" — 0.

Conjecture: This short exact sequence after applying lim* (=),
induces the Connes-Tzygan exact sequence:

.— HHy,(A) — HC5,(A) — HC%,—2(A) — HHy,-1(A) — ...
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Group homology

e Let G be a group.
o If F > G is a presentation, we set R := Ker(F - G).

e R,y is so-called relation module over G (functorial by Pres(G)).

Theorem (R. Mikhailov, — (2013))

For a group G and a G-module M there are isomorphisms:
Ho,—i(G) = lim"(R¥") ¢,

Hon-i(G, M) = lim" R®' ®7¢ M, 0<i<n-1.
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Hopft’s formula

e Hy,y i(G) = I|mZ(R oYe

e n:=11:=0.

o (Rap)c = i]

o Hy(G) =lim m

o Hy(G) = F] 1 (Hopf’s formula).

e Ho(G) = R[O—Ff] is the biggest subgroup of [F R which is

‘independent’ under the choice of F' - G.

o All this theory can be considered as a generalisation of the Hopf’s
formula.
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fr-codes of functors Gr — Ab

@ Pres is the category whose objects are presentations of a group
F5 G, and whose morphisms are commutative squares
F1 —_— F2

m ym

Gl —— GQ.
@ The fibre of the forgetful functor Pres — Gr over a group G is the
category Pres(G).
o ZF can be considered as a functor ZF : Pres — Ab.

e A functorial ideal is a subfunctor x <1 ZF : Pres - Ab consisting of
ideals.

e Example. The augmentation ideal f <1 ZF is a functorial ideal.
o Example. The ideal r = Ker(ZF - ZG) is a functorial ideal.

o Example. All combinations like f2r + r?f + (rfrf n %) + r'0 are
functorial ideals (we can use -, +,N ).
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fr-codes of functors Gr — Ab

e For a functorial ideal x we can consider higher limits

[x]= lim" x:Gr— Ab.
Pres(G)

Gr lim' x.
Pres(G)

o If x ¢ f, then °[x] = 0. Hence, the first interesting case is ![x].
o We set
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fr-codes of functors Gr — Ab

Examples:

Let I :Gr — Ab be the functor that sends G to the augmentation ideal.
Then

I(G) = [r] = lim'r.

More examples:

Gy = [r+17], 11 = [r+£9),

I ®yc I = [fr +rf], Gap ® Gy = [fr + rf + £3],
I%263 = [f2r + frf + rf?], (I/1%)%262 = [fr + rf + £4],

I? ®76 I = [f?r + rf], (I%/1*) ®z¢ I = [f?r + rf + 7],
Hy(G) = [fr? + r2f], H3(G) = [r? + frf]

Hg(G) = [fr3 + r3f], H5(G) =[x + fr3f]

Tor(Gup, Gap) = [r2 + f3], Ly ®3Gyp = [r3 + f4],
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fr-codes of functors Gr — Ab

e The class of functors that can be obtained as [x], where x is a
‘polynomial’ of f,r, is called fr-universe.

e x is called an fr-code of the functor.

@ The class of functors that can be obtained as ‘[x], where X is a
"polynomial’ of f,r, is called higher fr-universe.

@ There are a lot of functors in the fr-universe:

Hopio(G) = [fr" 4+ v"f], Hyp 1(G) =[x + fr" ] n>1.
n-1 ) )
I'®76 1926 = [pf" 1+ " 4] forn, 1> 1.
i=1

(I'17") @76 1%%6™ = [pf™ 1+ S £ et L 7] for m, 1> 1,k > L.
=1

G%' = Zf’ Lefn- 1+f”+1] for n > 1.
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fr-codes of functors Gr — Ab

e Question: is there an fr-code for Hyo(G)?
@ Question: is there an fr-code for L;Q" Gy, for 1 <i<n—-27

@ There is a higher fr-code:

Ln z® Gab— I‘ +fn+1]
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fr-code lim® lim? lim® lim?
[ 0 0 0 0
r T 0 0 0
rr 0 I®I 0 0
rrr 0 0 I®I®I 0

rrrr 0 0 0 I®I®IQ®I

fr+trf 1 Q71 0 0 0
fir frffrif TRz IOz 1 0 0 0
r+ Gab 0 0 0
r+fFf 1/1° 0 0 0
rf+fr 17 0yq 1 0 0 0
rf4fFfr P o1 0 0 0
rfr+frr-+fFff Tor(Gap ® Gaps Gap) 0 0 0
frfrfff Gab ® Gap 0 0 0
r A frff r i1 0 Gab ® Gap ® Gap 0 0 0
rr | Tor(Gab, Gap) Gab ® Gap 0 0
rrr4fEfF L2®° (Gap) L18% (Gap) | Gab®Gap ®Gap 0

rrrr+fFf L3 ®% (Gap) Ly @ (Gap) L1 ®% (Gap) G®!
rr4frf H3(G) 1 ®yc1 0 0
rrf+4frr Hy(G) Hs(G) 1®za 1 0

rrr+frrf H5(G) H4(G) H3(G) 1®7c 1
rrrf4frrr Hg(G) Hs5(G) Hy(G) H3(G)

rf- ffr | 12/1° ® G 0 0 0
rfff+rfr4rrf 0 I1®Ga, ®Gap 0 0
rrfff+rrfr+rrrf 0 0 I®I®G,, ®G4p 0

vanov




Technique. Monoadditive representations

o Let C,D be categories with pairwise coproducts and F :C — D.
@ The morphisms ¢ R c1 Ucy 2 ¢o induce the morphism
Fler)uF(ea) — Flcerues).
Def. F is additive (resp. monoadditive, split monoadditive) if

this morphism is an isomorphism (resp. monomorphism, split
monomorphism in the category of bifunctors).

@ The functors sq:C - C and sq: D — D given by sq(z) =z U x.
@ Then we have Tx:sqo F — F osq.
e A representation of C is a functor C — Mod(k).
e Let F:C — Mod(k) be a monoadditive representation. Set
YF := coker(Tx).
0—>]:€BJ:E>.7:osq—>Z]:—>O

Def. A monoadditive representation F is said to be n-monoadditive,
if ¥F is (n - 1)-monoadditive.
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Technique. Monoadditive representations

Proposition

Let F be a monoadditive representation of C. Then for any n > 0 there
is an isomorphism:
lim" F = lim" ™ SF.

If F is an n-monoadditive representation, then lim* F=0 for0<i<n
and lim* F = lim"™"X"F.

If F is an oo-monoadditive representation, then lim*F =0 for any i > 0.

i O. Ivanov Higher limits. fr-codes 19 / 22



Technique. Monoadditive representations

If F is a split monoadditive representation, then :.F is a split
monoadditive representation.

A split monoadditive representation is co-monoadditive. \
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Technique. Monoadditive representations

split monoadditive => oco-monoadditive = monoadditive

lim* =0 lim* =0 lim® =0

lim® F = lim" ' ©F
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Example of a proof

@ We can prove that f is split monoadditive.
e Hence lim’f = 0 for all i.

e Consider the short exact sequence
0—r—f—>I1—0
o Consider the corresponding long exact sequence of higher limits
0 - lim’r - lim"f > [im°7 - lim'r > lim'f - lim'7 - ...

e [ is a constant functor. It follows that lim*I = 0 for i > 0 and
lim°7 = 1.

e Hence lim'r = I and lim‘r = 0 for 4 # 1.

I=1[r].
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