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Abstract

We give a simple proof of Dorronsoro's theorem (Theorem 2 in [2]) and also use similar ideas to
establish some equivalence for embeddings of vector �elds.

1 Introduction

Theorem 1 (Dorronsoro's theorem, Theorem 2 in [2]). For any real-valued function f ∈ C∞0 (Rd) there

exists a real-valued function F ∈ H1 such that

I1[F ] > f ; ‖F‖H1
. ‖∇f‖L1

.

We denote the real Hardy class by H1 (we address the reader to the book [10] where he can �nd all
the material about the Hardy class H1 and the BMO space) and the Riesz potential of order a by Ia,

Iα[f ] = f ∗ ca| · |a−d, f ∈ C∞0 (Rd), a ∈ (0, d).

Here ca is the constant such that Iα is the Fourier multiplier with the symbol |ξ|−α. Surely, the Riesz
potentials may be applied to a function belonging toH1. Though Theorem 1 may seem a bit sophisticated,
we give a corollary that emphasizes its importance.

Corollary 1. W 1
1 (Rd) ↪→ L d

d−1 ,1
(Rd).

Here W 1
1 is the homogeneous Sobolev space, which is the completion of the set C∞0 with respect to

the norm
‖f‖W 1

1
= ‖∇f‖L1

.

In what follows, it is convenient to work with complex-valued functions also; we assume that a function
in W 1

1 is complex-valued. The symbol L d
d−1 ,1

denotes the Lorentz space (see the book [3] for a detailed

study of these spaces). The author does not know who was the �rst to obtain Corollary 1, however,
see the paper [5] for even more general (with respect to another interpolation parameter) result. The
corollary follows from Theorem 1 if one recalls that the Riesz potential I1 maps H1 to L d

d−1 ,1
(this may

be justi�ed by means of real interpolation).
We give a proof of Theorem 1 in the next section. It di�ers from the original proof in [2] by two

points: it is constructive (i.e. the function F may be computed in terms of f), the original proof used
various duality arguments several times; the presented proof may seem more transparent, because we use
only some basic facts (such as the Fe�erman�Stein theorem or Gustin's boxing inequality) without going
into detailed study of fractional maximal functions. However, the machinery that works in our proof is
the same as in the original.

In Section 3, we show that in a more general setting, the statements in the style of Theorem 1 are, in
fact, equivalent to a proper analog of Gustin's inequality.

Finally, we collect the statements we use without proof in the last section.
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2 Proof of theorem 1

We begin with an easy lemma that lies in the heart of all our constructions. By (−∆)
1
2 we denote the

Fourier multiplier with the symbol |ξ|.

Lemma 1. For any function ϕ ∈ C∞0 (Rd), d > 2, the function (−∆)
1
2ϕ is in H1.

Proof. By the Fe�erman�Stein theorem, it su�ces to verify that (−∆)
1
2ϕ ∈ L1 and Rj [(−∆)

1
2ϕ] is in L1

for all j = 1, 2, . . . , d (here Rj stands for the Riesz transform). By the very de�nition,

Rj [(−∆)
1
2ϕ] =

1

2πi

∂ϕ

∂xj
,

which is obviously summable. The function (−∆)
1
2ϕ needs more study. First, it is a bounded function,

because its Fourier transform, which is ξ 7→ |ξ|ϕ̂(ξ), is summable (it decays rapidly at in�nity). Second,
it can be rewritten as I1[−∆ϕ], so, outside the support of ϕ we may integrate by parts:

(−∆)
1
2ϕ(x) = I1[−∆ϕ](x) = −c1

∫
Rd

∆ϕ(x− t)|t|1−d = −c′1
∫
Rd

ϕ(x− t)c|t|−1−d, x ∈ suppϕ,

here c′1 denotes some numerical constant that arises from di�erentiation of the potential. This formula

shows that (−∆)
1
2ϕ(x) = O(|x|−1−d), which leads to the desired summability.

Now �x some hat-function θ (i.e. a C∞0 (Rd)-function that is non-negative and equals one on the unit
ball). Let R be a positive real number, then θR(x) = θ( xR ). Using Lemma 1 for ϕ = θ and rescaling, we
get a corollary.

Corollary 2. For any R > 0 there exists a real-valued function ΘR ∈ H1 such that

I1[ΘR] > χBr(0); ‖ΘR‖H1
. Rd−1

uniformly in R.

The symbol χω denotes the characteristic function of a measurable set ω; Br(z) stands for the ball of

radius r centered at z. Speci�cally, one may take ΘR = (−∆)
1
2 θR. Obviously, one can change the ball

centered at the origin for any other ball of the same radius. So, we have proved Theorem 1 �for the case
where f is a characteristic function of a ball�. The latter part of the proof is very standard (for example,
a similar method leads to the characterisation of measures µ such that W 1

1 ↪→ L d
d−1

(µ), see [7]), the idea

is to break the function f into characteristic functions of balls with the control of the W 1
1 -norm. For that

purpose we need the notion of Hausdor� capacity.

De�nition 1. Let α ∈ [0, d]. The α-Hausdor� capacity of the set ω ⊂ Rd is de�ned by the formula

Hα
∞(ω) = inf

B

∑
rαj , (1)

where the in�mum is taken over all the coverings B of Ω by closed balls (and the rj are the radii of the

balls).

This notion allows us to prove Theorem 1 �for the case where f is a characteristic function of a set�.

Proposition 1. Let ω be an open subset of Rd. There exists a real-valued function Ω ∈ H1 such that

I1[Ω] > χω; ‖Ω‖H1
. Hd−1

∞ (ω).

To prove the proposition, one simply considers an almost optimal (in formula (1)) covering of ω by
the balls Brj (xj) and take Ω to be

∑
Θrj ,xj , where Θrj ,xj denotes the function Θrj from Corollary 2

adjusted to the ball Brj (xj).
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Proof of Theorem 1. By using dilations, we may assume that f is supported in a unit cube, and
multiplying it by an appropriate scalar, we may assume that ‖∇f‖L1 = 1. For any j ∈ Z+, de�ne ωj =
{x ∈ Rd | f(x) > j}. For each ωj , we construct a real-valued H1-function Ωj such that

I1[Ωj ] > χωj ; ‖Ωj‖H1 . Hd−1
∞ (ωj).

Such functions Ωj exist by virtue of Proposition 1. De�ne F by the formula

F =
∑
j>0

Ωj .

Then,

f 6
∑
j>0

χωj 6
∑
j>0

I1[Ωj ] = I1[F ].

Moreover,

‖F‖H1
6
∞∑
j=0

‖Ωj‖H1
.
∞∑
j=0

Hd−1
∞ (ωj) . 1 +

∞∫
0

Hd−1
∞ ({x ∈ Rd | f(x) > t}) .

1 +

∫
R

Hd−1(f−1(t)) = 2‖∇f‖L1 .

Here Hd−1 denotes the Hausdor� (d − 1)-measure. The last but one inequality is an application of
Gustin's inequality, Theorem 4 (note that, by Sard's theorem, almost all sets {x ∈ Rd | f(x) > t} have
smooth boundary), the last one is the coarea formula.

3 Embeddings for vector �elds

We present a general statement that lies behind Theorem 1. In what follows, let E and F be two �nite
dimensional vector spaces over C. Consider a function A : Rd×E 7→ F that is a homogeneous polynomial
of order m with respect to the �rst variable and a linear transformation with respect to the second one.
In such a case, A matches the di�erntial operator that maps E-valued vector �elds over Rd to F -valued
vector �elds by the rule

A(∂)f = F−1
[
A(2πiξ)F [f ](ξ)

]
, f : Rd → E,

the symbol F denotes the Fourier transform. Surely, the �eld f must be su�ciently smooth (e.g. belong
to the Schwartz class). For example, the di�erential operator ∇ corresponds to the function A∇ given by
the formula

A∇(ξ, e) = ξe, e ∈ R, ξ ∈ Rd.

Theorem 2 (Van Schaftingen's theorem, [8]). The inequality

‖∇n−1f‖L d
d−1

. ‖A(∂)f‖L1

holds if and only if the polynomial A is elliptic (i.e. A(ξ, e) = 0 if and only if e = 0 or ξ = 0) and

cancelling, i.e.
∩ξ∈Rd\{0}A(ξ, E) = {0}.

Surprisingly, there is no result that is similar to Corollary 1 (this is an open problem whether a similar
theorem can be stated with the Lebesgue norm L d

d−1
replaced by the Lorentz norm L d

d−1 ,1
; see the recent

survey [9]) in such a general setting. However, we can say something. We need one more de�nition.
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De�nition 2. Let a ∈ [0, d). If f is a locally summable function on Rd (or a measure of locally bounded

variation), then the fractional maximal operator of order a acts on it by the formula

Ma[f ](x) = sup
r>0

ra−d
∫

|x−y|6r

|f |(y) dy.

So, M0 is the usual Hardy�Littlewood maximal operator.

Theorem 3. Let A be as above, let l be any non-zero element of E∗, let j = 1, 2, . . . , d. The two

statements below are equivalent.

1. For any smooth compactly supported vector �eld ϕ there exists a real-valued function Φ such that

I1[Φ] > <〈∂n−1j ϕ, l〉; ‖Φ‖H1 . ‖A(∂)ϕ‖L1 .

2. For any smooth compactly supported vector �eld ϕ and every non-negative Borel measure µ

<
∫
Rd

〈∂n−1j ϕ, l〉 dµ . ‖A(∂)ϕ‖L1
‖M1[µ]‖L∞ .

Proof. We are going to apply Ky Fan's minimax theorem, Theorem 5. Let X be the unit ball of the BMO
space, this set is convex and compact (in the topology σ(BMO,H1), we use the fact that BMO is dual
to H1). Let Y be given by the formula

Y = {g ∈ H1(Rd) | I1[g] > <〈∂n−1j ϕ, l〉}.

The function L : X × Y → R is de�ned as follows:

L(f, g) = <〈f, g〉

This function is continuous with respect to the �rst variable and bilinear. So, by Theorem 5 (we have
interchanged the minimum and maximum, we can do this by applying the theorem to the function −L,
because we are working with a bilinear function L),

max
f∈X

min
g∈Y
<〈f, g〉 = min

g∈Y
max
f∈X
<〈f, g〉

The value on the right-hand side is (by the H1-BMO duality)

min{‖g‖H1
| I1[g] > <〈∂n−1j ϕ, l〉}.

So, the �rst of the two statements listed in Theorem 3 is equivalent to the inequality

max
f∈X

min
g∈Y
<〈f, g〉 . ‖A(∂)ϕ‖L1

.

Let us calculate the value on the left-hand side (we �x some function f for a while):

min
g∈Y
<〈f, g〉 = min

g∈Y
〈I1[g],<(−∆)

1
2 [f ]〉.

This formula is meaningful, for example, when I1[g] ∈ C∞0 . If <(−∆)
1
2 [f ] is not a non-negative distribu-

tion, then this minimum equals −∞. Indeed, this follows from Lemma 1: if 〈φ,<(−∆)
1
2 [f ]〉 < 0 for some

non-negative C∞0 -function φ, then the value 〈<〈∂n−1j ϕ, l〉+ λφ,<(−∆)
1
2 [f ]〉 can be as small as we want
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(and, by Lemma 1, <〈∂n−1j ϕ, l〉+λφ = I1[gλ] for some gλ ∈ H1). It is a well-known fact that non-negative

distributions are (real-valued non-negative) measures of temperate growth. But if <(−∆)
1
2 [f ] = µf is a

measure, then

min
g∈Y
<〈f, g〉 = min

g∈Y
〈I1[g],<(−∆)

1
2 [f ]〉 =

∫
<〈∂n−1j ϕ, l〉 dµf ,

where µf is a non-negative measure of temperate growth such that ‖I1[µf ]‖BMO 6 1; this formula is
obvious for the case I1[g] ∈ C∞0 , in the other cases it may be obtained by approximation. Thus, by
Adams's theorem 6,

max
f∈X

min
g∈Y
<〈f, g〉 � max

({
<〈
∫
∂n−1j ϕdµ, l〉

∣∣ µ is a non-negative measure such that ‖M1[µ]‖L∞ 6 1
})
.

So, the second statement of Theorem 3 is equivalent to the inequality

max
f∈X

min
g∈Y
<〈f, g〉 . ‖A(∂)ϕ‖L1 .

Theorem 3 shows that statements in the spirit of Dorronsoro's theorem are, in some sense, equivalent
to the fact that class of measures µ such that

‖∇n−1f‖L d
d−1

(µ) . ‖A(∂)[f ]‖L1

does not depend on the operator A.

4 Our tools

Theorem 4 (Gustin's boxing inequality, [4]). Let ω be an open subset of Rd with smooth boundary.

Then,
Hd−1
∞ (ω) . Hd−1(∂ω).

Theorem 5 (Ky Fan's minimax theorem). Let X and Y be convex subsets of linear topological spaces,
let X be compact. If a continuous function L : X ×Y → R is convex with respect to the �rst variable and

concave with respect to the second one, then

min
x∈X

max
y∈Y

L(x, y) = max
y∈Y

min
x∈X

L(x, y)

We have stated a simpli�cation of Ky Fan's theorem (for the original version, see the paper [6]1).

Theorem 6 (Adams's theorem). Let a ∈ (0, d) be a �xed number. Then,

‖Ia[f ]‖BMO . ‖Ma[f ]‖L∞ .

If f is non-negative and
∫
Rd

(1 + |x|)−a−dIa[f ](x) dx <∞, then

‖Ma[f ]‖L∞ . ‖Ia[f ]‖BMO.

This theorem was proved in the paper [1].

1Our simpli�cation may be an earlier version of the minimax theorem, it may be a result some other mathematician.
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